

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS October Examination 2019

Course Code	: MTH 307
Course Title:	Numerical Analysis II
Credit Unit:	3 Hours
Total:	70 Marks
Instruction:	Answer Question Number One and Any Other Four Questions

1. (a) Determine the number of non-zero coefficient in $(3x + 5)(x^2 - 1)$ (3 Marks)

(b) What is the degree of polynomial involved in the exercise $(x + 1)(x^2 - \frac{2}{x})$? (4 Marks)

(c) Write down the expansion of e^{-x} and e^{-3x} then estimate e^{-3} to 3 decimal places (8 Marks)

- (d) State the properties of inner products
- 2. The table below gives the reading from the rates of communal clashes among tribes in Nigeria

Time t	1	2	3	4	5	6	7	8
Reading y	4	7	6	10	40	48	59	170

Fit (a) A linear function to the data in the table (4 marks) (b) A quadratic polynomial to the data in the table by the method of least squared (8 marks)

- 3. (a) State the standard rules in numerical analysis that can be used to estimate Quadrature formulas (4 Marks)
 - (b) Obtain or Derive the Trapezoidal rule

(8 Marks)

(7 Marks)

4. Fit a natural cubic spline to the data provided in Table below and use the same to estimate F(57) (12 Marks)

x	25	36	49	64	81
y = f(x)	5	6	7	8	9

- 5. (a) Given that the Legendre polynomial is given $P_n(x) = \frac{1}{2^n n!} \frac{d}{dx^n} [(x^2 1)^n]$ for n=0,1,2 Find $P_1(x)$ and $P_2(x)$ (4 Marks)
 - (b) Use the recurrence formula for the Legendre polynomial

 $P_{n+1}(x) = \left(\frac{2n+1}{n+1}\right) x. P_n(x) = \frac{n}{n+1} \text{ where } P_n(x) \text{ satisfies the Legendre's differential equation } (1-x^2)P''_n(x) = -2x. P_n'(x) + n(n+1)P_n(x) = 0, for n = 3,4,5.$ Find P_3, P_4, P_5 using $P_0(x) = 1, P_1(x) = x$ (8 Marks)

6. (a) Write the error as the difference between exact y(x) and approximated values P(x) (2 Marks)

(b) Given the Table below, use trapezoidal rule to integrate \sqrt{x} between 1.0 and 1.3

X	1.0	1.05	1.10	1.15	1.20	1.25	1.30
\sqrt{x}	1.00	1.025	1.049	1.072	1.095	1.118	1.140

(4 Marks)

(c) Obtain the actual error and estimate the truncation error (6 Marks)