

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES

April /May Examination 2019

Course Code:	MTH309
Course Title:	Optimization Theory
Credit Unit:	3
Time Allowed:	3 HOURS
Total:	70 Marks
Instruction:	ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS

(2 marks)
(2.5 marks)
(2.5 marks)
(2 marks)

- (ii) A solution to the problem $min\{f(x)|x \in D\}$ (2 marks)
- (d). Use the Simplex method to solve the following linear programming problem;

Maximize
$$Z = 2x_1 - x_2 + 2x_3$$

Subject to; $2x_1 + x_2 \le 10$
 $x_1 + 2x_2 - 2x_3 \le 20$
 $x_2 + 2x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$ (11 marks)

2. (a) Define the dual Problem, if we let the primal problem be as stated below; (5 marks)

Maximize $Z = c_1 x_1 + \dots + c_n x_n$ Subject to: $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$ \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$ $x_1, x_2, \dots, x_n \ge 0$ (b) Write the dual of the following primal LP problem

Maximize
$$Z = x_1 + 2x_2 + x_3$$

Subject to; $2x_1 + x_2 - x_3 \le 2$
 $-2x_1 + x_2 - 5x_3 \ge -6$
 $4x_1 + x_2 + x_3 \le 6$
 $x_1, x_2, x_3 \ge 0$ (7 marks)

3. Solve the following linear programming problem

Minimize
$$W = 2x_1 + 10x_2 + 8x_3$$

Subject to; $x_1 + x_2 + x_3 \ge 6$
 $x_2 + 2x_3 \ge 8$
 $-x_1 + 2x_2 + 2x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$ (12 marks)

4. (a) Use penalty method to solve the following problem;

Maximize
$$Z = 3x_1 + 2x_2$$

Subject to; $2x_1 + x_2 \le 2$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0$ (6 marks)

(b) Use two-phase simplex method to solve;

Maximize
$$Z = 5x_1 + 3x_2$$

Subject to; $2x_1 + x_2 \le 1$
 $x_1 + 4x_2 \ge 6$
 $x_1, x_2 \ge 0$ (6 marks)

5. Find the dual of the following Linear programming problem;

Maximize
$$Z = 3x_1 - x_2 + x_3$$

Subject to; $4x_1 - x_2 \le 8$
 $8x_1 + x_2 + 3x_3 \ge 12$
 $5x_1 - 6x_3 \le 13$
 $x_1, x_2, x_3 \ge 0$ (12 marks)

6. Solve the following minimization problem;

Minimize
$$W = 3x_1 + 2x_2$$

Subject to; $2x_1 + x_2 \ge 6$
 $x_1 + x_2 \ge 4$
 $x_1, x_2 \ge 0$ (12 marks)