

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES November, 2018 Examinations

Course Code:	MTH309
Course Title:	Optimisation Theory
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One and Any Other4 Questions

- 1. (a) Briefly describe what you understand by the following:
 - i) Linear programming
 - ii) Operation Research
 - iii) Sensitivity analysis
 - iv) Transportation problem

(1.5 marks for each = 6marks)

(b) A manufacturer produces two models of bicycles. The time (in hours) required for assembling, painting, and packaging eachmodel is as follows.

	Model A	Model B
Assembling	2	1
Painting	1	2
Packaging	1	1

The total time available for assembling, painting, and packaging is 6 hours, 6 hours, and 5 hours respectively, and that the cost per unit is N500 (Model A), N800 (Model B). Use graphical method to obtain the number of each type to be produced at a minimum cost? **16marks**

2. Use the algebraic method to solve the LLP

Minimize
$$z = 6x_1 + 5x_2$$

Subject to:
$$x_1 + x_2 \le 5$$
$$3x_1 + 2x_2 \le 12$$
$$x_1, x_2 \ge 0$$

12marks

	DESTINATION				
SOURCE	D_1	D_2	D_3	D_4	Supply
S_1	11	13	17	14	250
<i>S</i> ₂	16	18	14	10	300
S ₃	21	24	13	10	400
DEMAND	200	225	275	250	

3. (a) Define i) Feasible solution ii) Basic feasible solution of a transportation Problem 2Marksb) Find the initial basic feasible solution for the following transportation problem by VAM.

10Marks

4. (a) Define the following terms:

- i) Integer Programming Problem
- ii) Pure Integer Programming Problem
- iii) Mixed Integer Programming Problem

b) List and briefly explain two methods that can be used to solve Integer Programming Problem

6marks

6marks

5. Illustrate sensitivity analysis using simplex method to solve the following LPP:

Maximize	$z = 20x_1 + 10x_2$	
Subject to:	$x_1 + x_2 \le 3$	
	$3x_1 + x_2 \le 7$	
	$x_1, x_2 \ge 0$	12marks

6. (a) Define the following

(i) (ii) (iii)	Optimization problem in \mathbb{R}^2 Objective functions Optimal Value	2 marks 1½ marks 1½ marks	
(b) Nam	e and define two types of optimization problem.	5 marks	
(c) State	two objectives of optimization problem	2Marks	