

NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja
FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS
2021_2 Examinations...

Course Code: MTH 381

Course Title: MATHEMATICAL METHODS III
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Instruction: Answer Question One (1) and Any Other 4 Questions

Q1(a) Define a stationary steady- state vector field. (2 marks)
(b) What is the relationship between vector field and vector functions? (4 marks)
(c) Find $\int_{0}^{2} \int_{0}^{1}\left(x^{2}+y^{2}\right) d y d x$ (6 marks)
(d) State the Cauchy's Integral theorem. (2 marks)
(e) (i) Evaluate $\int_{0}^{1+i} z^{2} d z(\mathbf{3}$ mark)
(ii) Find the residue at the second order pole of $f(z)=\frac{50 z}{(z+4)(z-2)^{2}}(5$ marks $)$

Q2 (a) Suppose $f(x, y)=x^{2}-4 x y+8 y$, find $f(2,3)(4$ marks $)$
(b) Evaluate $\int_{-2}^{2} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$ ($\mathbf{8}$ marks)

Q3 (a) Define each of the following:
i) A scalar function (2 marks)
ii) a differentiable vector function ($\mathbf{2}$ marks)
(b) If $A=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$, evaluate $\int_{C} A \cdot d r$ from $(0,0,0)$ to $(1,1,1)$. (8 marks)

Q4, (a) Define a function of two variables. (2 marks)
(b) Find the Jacobian $\frac{\partial(u, v)}{\partial(x, y)}$ of $u=x^{2}+y^{2}, v=2 x y$. (5marks)
c) Show that $\oint_{c} \frac{d z}{z}=2 \pi i(\mathbf{5}$ marks)

Q5. a) Define whether $v(x)=\operatorname{cosb} x$ and $u(x)=\operatorname{sinb} x$ with $b \neq 0$ are linearly dependent or independent. (5 marks)
(b) Show that $f(z)=z^{3}$ satisfies the Cauchy- Riemann equations? (7 marks)

Q6(a) Define each of the following:
(i) derivative of a complex function (3 mark)
(ii) a differentiable complex function at a point ($\mathbf{3}$ marks)
(b) if $z_{1}=3-4 i$ and $z_{1}=5+2 i$. Find $\frac{z_{1}}{z_{2}}$ (6 marks)

