NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja
FACULTY OF SCIENCES
November 2018 Examinations

Course Code:	MTH381
Course Title:	Mathematical Methods III
Credit Unit:	$\mathbf{3}$
Time Allowed:	$\mathbf{3}$ Hours
Total:	70 Marks
Instruction:	Answer Question One (1) and Any Other $\mathbf{4}$ Questions

1. (a) (i) By using Wronskian determine the functions $u(x)=2 \sinh x$ and $v(x)=\cos x$ are linearly dependent
(ii) Find the Jacobian of polar coordinate r and θ where $x=r \cos \theta$ and
$y=r \sin \theta$
(5 marks)
(iii) Verify whether the following functions are functionally dependent, and it so find the relation between them $u=\frac{x+y}{1-x y}$ and $v=\tan ^{-1} x+\tan ^{-1} y \quad(6$ marks)
(b) Evaluate $\iint_{R} e^{x^{2}+y^{2}} d y d x$ by transforming it to polar coordinate, where R is the semicircular region bounded by the x -axis and the curve $x^{2}+y^{2}=1 \quad$ (8 marks)
2. (a) Evaluate the triple integrals $\int_{1}^{3} \int_{-1}^{1} \int_{0}^{2}(x+2 y-z) d x d y d z$ (6 marks)
(b) If $F=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$, evaluate the line integral $\int_{C} F \cdot d r$ along the parametric curves $x(t)=t, y(t)=t^{2}$ and $y(t)=t^{3}$ from the point $(0,0,0)$ to $(1,1,1)$
(6 marks)
3. Express each of the following function in the form $u(x, y)+i v(x, y)$, where u and v are real:
(a) Z^{3}
(3 marks)
(b) $\frac{1}{1-z}$
(3 marks)
(c) $e^{3 z}$
(d) $\ln z$
4. (a) The Laplace transforms of $f(t)$ is definition as $L\{f(t)\}=\int_{t=0}^{\infty} f(t) e^{-s t} d t$, show that $\quad L\{\sinh a t\}=\frac{a}{s^{2}-a^{2}}$
(8 marks)
(b) Solve the equation $\frac{d x}{d t}-2 x=4$, given that at $t=0, x=1$ by using Laplace transform technique
(4 marks)
5. For the Fourier series expansion of $f(x)$,

$$
f(x)=\frac{a_{o}}{2}+a_{1} \cos x+a_{2} \cos 2 x+\ldots+a_{n} \cos n x+\ldots \quad+b_{1} \sin x+b_{2} \sin 2 x+\ldots+b_{n} \sin n x+\ldots
$$

Prove that (i) $a_{o}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x$
(4 marks)
(ii) $b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x$
(4 marks)
(iii) $a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x$
(4marks)
6. (a) Show that $u(x, y)=x^{3} y-y^{3} x$ is an harmonic function and find a conjugate harmonic function $v(x, y)$ of $u(x, y)$
(b) Verify that $\cos z=\cos x \cosh y-i \sin x \sinh y$
(4 marks)

