

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES November 2018 Examinations

Course Code:	MTH381
Course Title:	Mathematical Methods III
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One (1) and Any Other 4 Questions

- 1. (a) (i) By using Wronskian determine the functions $u(x) = 2\sinh x$ and $v(x) = \cos x$ are linearly dependent (3 marks)
 - (ii) Find the Jacobian of polar coordinate r and θ where $x = r \cos \theta$ and $y = r \sin \theta$ (5 marks)
 - (iii) Verify whether the following functions are functionally dependent, and it so find the relation between them $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1} x + \tan^{-1} y$ (6 marks)
 - (b) Evaluate $\iint e^{x^2+y^2} dy dx$ by transforming it to polar coordinate, where R is the semi-

circular region bounded by the x-axis and the curve $x^2 + y^2 = 1$ (8 marks)

- 2. (a) Evaluate the triple integrals $\int_{1}^{3} \int_{-1}^{1} \int_{0}^{2} (x+2y-z) dx dy dz$ (6 marks) (b) If $F = (3x^2 + 6y)i - 14yzj + 20xz^2k$, evaluate the line integral $\int_C F \cdot dr$ along the parametric curves x(t) = t, $y(t) = t^2$ and $y(t) = t^3$ from the point (0, 0, 0) to (1, 1, 1) (6 marks)
- 3. Express each of the following function in the form u(x, y) + iv(x, y), where u and v are real:

(a) Z^3	(3 marks)
(b) $\frac{1}{1-z}$	(3 marks)
(c) e^{3z}	(3 marks)
(d) $\ln z$	(3 marks)

4. (a) The Laplace transforms of f(t) is definition as $L\{f(t)\} = \int_{t=0}^{\infty} f(t)e^{-st} dt$,

show that
$$L{\sinh at} = \frac{a}{s^2 - a^2}$$
 (8 marks)
(b) Solve the equation $\frac{dx}{dt} - 2x = 4$, given that at $t = 0, x = 1$ by using Laplace transform technique (4 marks)

5. For the Fourier series expansion of f(x),

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx + \dots + b_1 \sin x + b_2 \sin 2x + \dots + b_n \sin nx + \dots$$

Prove that (i)
$$a_o = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$
 (4 marks)

(ii)
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx$$
 (4 marks)

(iii)
$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx$$
 (4marks)

- 6. (a) Show that $u(x, y) = x^3 y y^3 x$ is an harmonic function and find a conjugate harmonic function v(x, y) of u(x, y) (8 marks)
 - (b) Verify that $\cos z = \cos x \cosh y i \sin x \sinh y$ (4 marks)