

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS October Examination 2019

Course Code:	MTH 381
Course Title:	Mathematical Methods III
Credit Unit:	3
Time allowed:	3 Hours
Instruction:	Answer Question Number One and Any Other Four Questions

- 1(a). Define the following terms;
 - (i) Linearly dependent functions(2 marks)(ii) linearly independent functions(2 marks)
- (b). Determine whether or not x^2 and e^{-2x} are linearly dependent functions. (3 marks)
- (c). (i) Find the Jacobian of u = xy, and $v = x^2 + y^2$ with respect to x and y., (3 marks)
 - (ii) If $x^2 + y^2 + u^2 v^2 = f_1$ and $uv + xy = f_2$, prove that $\frac{\partial(u,v)}{\partial(x,y)} = \frac{x^2 y^2}{u^2 + v^2}$. (6 marks)
- (d). Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) \, dy \, dx \, dz$ (6 marks)
- 2(a). Given that Z is the conjugate of a complex number Z.

show that
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
 (4 marks)

- (b). prove that $|z_1 z_2| = |z_1| |z_2|$ (4 marks)
- (c). solve the equation $6z^4 25z^3 + 32z^2 + 3z 10 = 0$ (4 marks)

3(a). Explain briefly the followings:

(i) Cauchy-Riemann equations	(2 marks)
(ii) Harmonic function?	(2 marks)

(b). Determine whether or not cos2Z satisfies the Cauchy-Riemann equations (8 marks)

4. If $A = (3x^2 - 6yz)i + (2y + 3xz)j + (1 - 4xyz^2)k$, evaluate $\int_c A dr$ from (0, 0, 0) to			
(1, 1, 1) along the following paths C:			
(a) $x = t, y = t^2, z = t^3$	(4 marks)		
(b) the straight lines from $(0, 0, 0)$ to $(0, 0, 1)$, then to $(0, 1, 1)$,			
and then to (1, 1, 1).	(5 marks)		
(c) the straight line joining $(0, 0, 0)$ and $(1, 1, 1)$	(3 marks)		
(d)			
5(a). Express $\frac{1+2i}{1-3i}$ in the form $r(\cos\theta + i\sin\theta)$	(5 marks)		
(b). Convert $12\cos(-60^\circ) + \sin(-60^\circ)$ to the rectangular form	(4marks)		
c. Evaluate $\int_0^3 \int_0^2 (4 - y^2) dy dx$	(3 marks)		
6(a). Determine the poles and the residue at each pole of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$	(6 marks)		

(b). Find the residue of
$$f(z) = \frac{ze^z}{(z-a)^3}$$
 at its pole (6 marks)