NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS

October Examination 2019

Course Code: MTH 381

Course Title: Mathematical Methods III

Credit Unit:
3
Time allowed: $\mathbf{3}$ Hours
Instruction: Answer Question Number One and Any Other Four Questions

1(a). Define the following terms;
(i) Linearly dependent functions
(2 marks)
(ii) linearly independent functions
(2 marks)
(b). Determine whether or not x^{2} and $e^{-2 x}$ are linearly dependent functions. (3 marks)
(c). (i) Find the Jacobian of $u=x y$, and $v=x^{2}+y^{2}$ with respect to x and y., ($\mathbf{3}$ marks)
(ii) If $x^{2}+y^{2}+u^{2}-v^{2}=f_{1}$ and $u v+x y=f_{2}$, prove that $\frac{\partial(u, v)}{\partial(x, y)}=\frac{x^{2}-y^{2}}{u^{2}+v^{2}}$. $(6$ marks)
(d). Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$
(6 marks)

2(a). Given that Z is the conjugate of a complex number Z .

$$
\begin{equation*}
\text { show that } \overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}} \tag{4marks}
\end{equation*}
$$

(b). prove that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(c). solve the equation $6 z^{4}-25 z^{3}+32 z^{2}+3 z-10=0$
(4 marks)

3(a). Explain briefly the followings:
(i) Cauchy-Riemann equations
(ii) Harmonic function?
(b). Determine whether or not $\cos 2 \mathrm{Z}$ satisfies the Cauchy-Riemann equations ($\mathbf{8}$ marks)
4. If $A=\left(3 x^{2}-6 y z\right) i+(2 y+3 x z) j+\left(1-4 x y z^{2}\right) k$, evaluate $\int_{c} A . d r$ from $(0,0,0)$ to $(1,1,1)$ along the following paths C :
(a) $x=t, y=t^{2}, z=t^{3}$

(4 marks)

(b) the straight lines from $(0,0,0)$ to $(0,0,1)$, then to $(0,1,1)$, and then to $(1,1,1)$.
(c) the straight line joining $(0,0,0)$ and $(1,1,1)$
(d)

5(a). Express $\frac{1+2 i}{1-3 i}$ in the form $r(\cos \theta+i \sin \theta)$
(b). Convert $12 \cos \left(-60^{\circ}\right)+\sin \left(-60^{\circ}\right)$ to the rectangular form
c. Evaluate $\int_{0}^{3} \int_{0}^{2}\left(4-y^{2}\right) d y d x$
(5 marks)
(4marks)
(3 marks)
6(a). Determine the poles and the residue at each pole of the function

$$
f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}
$$

(6 marks)
(b). Find the residue of $f(z)=\frac{z e^{z}}{(z-a)^{3}}$ at its pole
(6 marks)

