NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES
DEPARTMENT OF PURE AND APPLIED SCIENCE

## 2021_2 EXAMINATIONS...

COURSE CODE:
COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY301
CLASSICAL MECHANICS II
3
( $\mathbf{2}^{1} / 2$ HRS)
Answer question 1 and any other four questions

## QUESTION 1

a. Distinguish between a particle and a rigid body as applied in classical mechanics.

4 marks
b. Consider a system of $n$ particles and state the conditions for it to be classified as a rigid body

4 marks
c. i. Briefly explain what is meant by the "number of degrees of freedom" of a system 2 marks
ii. Give three examples on which the freedom of choice of how to specify the degrees of freedom might depend.

2 marks
d. i. The system shown in the figure consists of a spiral spring with force constant $k$ suspended from a

rigid support and loaded with an object of mass $m$. The system is stretched by a small displacement $x$ and released. Use the Lagrangian method to obtain the Newtonian equation of motion of the system. 7 marks ii. Write down the Hamiltonian function for the system and comment on its physical significance. 3 marks

## QUESTION 2



The figure shows a particle sliding on a smooth inclined plane whose inclination $\theta$ is increasing at a constant rate $\omega$. If $\theta=0$, at time $t=0$, at which time the particle starts from rest, use the Lagrangian method to show that the acceleration of the particle down the incline may be represented by:

$$
\ddot{x}=\omega^{2} x-g \sin \omega t
$$

## QUESTION 3

Obtain Hamilton's equations for a one-dimensional harmonic oscillator shown in the figure, hence obtain

obtain the Newtonian equivalent equation of motion.
12 marks

## QUESTION 4

a. Titan, the largest moon of Saturn, has a mean orbital radius of $1.22 \times 10^{9} \mathrm{~m}$. The orbital period of Titan is 15.95 days. Hyperion, another moon of Saturn, orbits at a mean radius of $1.48 \times 10^{9} \mathrm{~m}$. Use Kepler's third law of planetary motion to predict the orbital period of Hyperion in days. 6marks b. The planet Mercury travels around the Sun with a mean orbital radius of $5.8 \times 10{ }^{10} \mathrm{~m}$. The mass of the Sun is $1.99 \times 10{ }^{30} \mathrm{~kg}$. Use Newton's version of Kepler's third law to determine how long it takes Mercury to orbit the Sun. Give your answer in Earth days. 6marks

## QUESTION 5

(a) (i) Distinguish between inertial and non-inertial reference frames?

2 marks
(ii) Briefly explain phenomenon of the Coriolis force

4 marks
(b)Find the eastward drift of an object falling freely from a height of 100 m with latitude of $45^{0}$

6 marks

## QUESTION 6

(a) Briefly explain the concepts of (i) virtual displacement (ii) virtual Force and virtual work and write down appropriate equations of them

6 marks
(b) Obtain the equation which relates virtual work with non-constraint forces

6 marks

