COURSE CODE:

COURSE TITLE:

CREDIT UNIT:
TIME ALLOWED:

INSTRUCTION:

PHY 303

SPECIAL RELATIVITY
2
(2 HRS)
Answer question 1 and any other three questions

QUESTION 1

(a). Suppose a supersonic airplane flies at a speed of $1,650 \mathrm{~km} / \mathrm{hr}$ from Nairobi, Kenya, to Quito, Ecuador; note that this is the same speed that Earth rotates, but in the opposite direction. Describe how this flight would look to an observer on the Moon .
(4 marks)
(b). Describe at least three pieces of evidence supporting the special theory of relativity.
(c). State the Galilean space-time transformation equations.
(d). The period of a pendulum is measured to be 3.00 s in the reference frame of the pendulum. What is the period when measured by an observer moving at a speed of 0.960 c relative to the pendulum?
(e). What if the speed of the observer increases by 4.00% ? Does the dilated time interval increase by 4.00% ?
(7 marks)

QUESTION 2

(a). What is proper time?
(3 marks)
(b). The light emitted by a galaxy contains a continuous distribution of wavelengths because the galaxy is composed of millions of stars and other thermal emitters. However, some narrow gaps occur in the continuous spectrum where the radiation has been strongly absorbed by cooler gases in the galaxy. In particular, a cloud of ionized calcium atoms produces very strong absorption at 394 nm for a galaxy at rest with respect to the Earth. For the galaxy Hydra, which is 200 million light year away, this absorption is shifted to 475 nm . How fast is Hydra moving away from the Earth?
(9 marks)
(c). Devise an experiment you could conduct to test a prediction of special relativity.
(3 marks)

QUESTION 3

(a). What are the outcomes of Michelson-Morley experiment?
(5 marks)
(b). Suppose you are driving your car on a business trip and are traveling at $30 \mathrm{~m} / \mathrm{s}$. Your boss, who is waiting at your destination, expects the trip to take 5.0 h . When you arrive late, your excuse is that the clock in your car registered the passage of 5.0 h but that you
were driving fast and so your clock ran more slowly than the clock in your boss's office. If your car clock actually did indicate a 5.0-h trip, how much time passed on your boss's clock, which was at rest on the Earth?
(5 marks)
(c). An observer on Earth sees a spaceship at an altitude of 435 m moving downward toward the Earth at 0.970 c . What is the altitude of the spaceship as measured by an observer in the spaceship?
(5 marks)

QUESTION 4

(a). Differentiate between inertial and non-inertial frames of reference.
(3 marks)
(b) A man in a boat moving at constant speed of $50 \mathrm{~km} / \mathrm{h}$ relative to the shore throws an object in the forward direction with a speed of $20.5 \mathrm{~km} / \mathrm{h}$. What is the speed of the object as measured by an observer at rest at the shore.
(4 marks)
(c) An observer at rest with respect to the ground observes a particle of mass $\mathrm{m}_{1}=3 \mathrm{~kg}$ moving along the x -axis with a velocity $\mathrm{u}_{\mathrm{s}}=3 \mathrm{~m} / \mathrm{s}$. It approaches a second particle of mass $\mathrm{m}_{2}=1 \mathrm{~kg}$ moving with velocity $u_{2}=-3 \mathrm{~m} / \mathrm{s}$ along the same axis. After head-on collision, he finds that the velocity of m_{2} is $u_{2}{ }^{\prime}=-3 \mathrm{~m} / \mathrm{s}$ along the x -axis. What are the momenta before and after the collision as seen by a moving observer walking with a velocity of $2 \mathrm{~m} / \mathrm{s}$ relative to the ground along the x -axis?
(8 marks)

QUESTION 5

(a). State Einstein's theory of relativity.
(b). An observer on Earth sees an alien spaceship approaching at 0.60 c . The Enterprise comes to the rescue overtaking the spaceship at 0.90 c relative to the alien spaceship. How fast would the observers on earth measure the Enterprise to be travelling at? ($\mathbf{5}$ marks)
(c). A friend borrows your red "Ferrari Spaceship Model X-119" capable of travelling at 0.85 c . The Ferrari is measure to be 5.6 m high and 18 m long in a stationary reference frame.
(i) How long would you say the Ferrari is as it sped by you at maximum speed?
(ii) Your friend has been gone for 2.0 h your time. How much time does he say has elapsed?

