NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_2 EXAMINATIONS ...

COURSE CODE:	PHY309
COURSE TITLE:	QUANTUM MECHANICS 1
CREDIT UNIT:	3
TIME ALLOWED:	(2 ¹ / ₂ HRS)

INSTRUCTION:

Answer question 1 and any other four questions

QUESTION 1

. You are given the set $S_1 = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \}, \}$ (a) Are they linearly independent? 3 marks 3 marks (b) Are they orthogonal? (c) Are they normalized? If not, normalize them. 4 marks (d) Write the vector $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ In terms of the usual basis in the Euclidean plane, (i) 4 marks In terms of the basis $S_U = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \},\$ (ii) 4 marks (e) Write the matrix of transformation from basis S_U to basis S_1 4 marks

QUESTION 2

- (a) Find the maximum kinetic energy with which an electron is emitted from a metal of work function 3.2×10^{-39} J when a radiation of energy $E = 3.313 \times 10^{-39}$ J falls on it, given that the work function is 3.2×10^{-39} J. 4 marks
- (b) What value does Rayleigh-Jeans formula predict for the radiation of frequency $6 \times 10^{13} Hz$ emitted by a blackbody per unit time, per unit area at 2500 ⁰K. Compare this value with that predicted by Planck. 8 marks

QUESTION 4

(a) Normalize each vector in the set
$$\begin{cases} 1\\2\\3 \end{cases}, \begin{pmatrix} -2\\0\\4 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix} \end{cases}$$
, 6 marks

(b)Write the function $h(x)=e^{2x}\sin x$ as a sum of odd and even functions. 6 marks

QUESTION 5

You are provided with a ladder operators $\alpha = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{ip}{m\omega}\right), \alpha^+ = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{ip}{m\omega}\right)$. Also, the position and momentum operators are given by $\hat{x} = \sqrt{\frac{m\omega}{\hbar}} x$ and $\hat{p} = \sqrt{\frac{1}{m\hbar\omega}} p$, (i) Obtain the value of the commutator $[\hat{x}, \hat{p}]$. 2 marks (ii) Show that $\hat{x} = \frac{1}{\sqrt{2}} (\alpha + \alpha^+), \hat{p} = \frac{-i}{\sqrt{2}} (\alpha + \alpha^+)$. 2 marks

- (iii) For the ground state, find $\langle \hat{x}^2 \rangle$ and $\langle \hat{p}^2 \rangle$. 2 marks
- (b) Given that the expectation of the position and the momentum operators under consideration are zero in the ground state of the oscillator, prove that the following expression holds: $\langle x^2 \rangle \langle p^2 \rangle = \frac{1}{4} |\langle [x,p] \rangle|^2$

$$\alpha = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{ip}{m\omega} \right), \ \alpha^+ = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{ip}{m\omega} \right)$$
 6 marks

QUESTION 6

Given the matrix $\begin{bmatrix} 3 & -2 \\ 1 & 2 \end{bmatrix}$ find the corresponding eigenvectors and the eigenvalues. 12 marks