DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_2 EXAMINATIONS

COURSE CODE:
 COURSE TITLE:
 CREDIT UNIT:
 TIME ALLOWED:
 INSTRUCTION:
 QUESTION 1

PHY309
QUANTUM MECHANICS 1
3
($\mathbf{2}^{1} 2 \mathrm{HRS}$)
Answer question 1 and any other four questions
. You are given the set $S_{1}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$,
(a) Are they linearly independent?

3 marks
(b) Are they orthogonal?
(c) Are they normalized? If not, normalize them. 3 marks
(d) Write the vector $\binom{3}{4}$
(i) In terms of the usual basis in the Euclidean plane, 4 marks
(ii) In terms of the basis $S_{U}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$, 4 marks
(e) Write the matrix of transformation from basis S_{U} to basis S_{1}

QUESTION 2

(a) Find the maximum kinetic energy with which an electron is emitted from a metal of work function $3.2 \times 10^{-39} \mathrm{~J}$ when a radiation of energy $E=3.313 \times 10^{-39} \mathrm{Jfalls}$ on it, given that the work function is $3.2 \times 10^{-39} \mathrm{~J}$.
(b) What value does Rayleigh-Jeans formula predict for the radiation of frequency $6 \times 10^{13} \mathrm{~Hz}$ emitted by a blackbody per unit time, per unit area at $2500{ }^{\circ} \mathrm{K}$. Compare this value with that predicted by Planck. 8 marks

QUESTION 4

(a) Normalize each vector in the set $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\right\}$, 6 marks
(b)Write the function $h(x)=e^{2 x} \sin x$ as a sum of odd and even functions.

QUESTION 5

You are provided witha ladder operators $\alpha=\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i p}{m \omega}\right), \alpha^{+}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right)$. Also, the position and momentum operators are given by $\hat{x}=\sqrt{\frac{m \omega}{\hbar}} x$ and $\hat{p}=\sqrt{\frac{1}{m \hbar \omega}} p$,
(i) Obtain the value of the commutator $[\hat{x}, \hat{p}]$.
(ii) Show that $\hat{x}=\frac{1}{\sqrt{2}}\left(\alpha+\alpha^{+}\right), \hat{p}=\frac{-i}{\sqrt{2}}\left(\alpha+\alpha^{+}\right)$. 2 marks
(iii) For the ground state, find $\left\langle\hat{x}^{2}\right\rangle$ and $\left.<\hat{p}^{2}\right\rangle$. 2 marks
(b) Given that the expectation of the position and the momentum operators under consideration are zero in the ground state of the oscillator, prove that the following expression holds: $<x^{2}><p^{2}>=\frac{1}{4}|<[x, p]>|^{2}$

$$
\alpha=\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i p}{m \omega}\right), \alpha^{+}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i p}{m \omega}\right) \quad 6 \text { marks }
$$

QUESTION 6

Given the matrix $\left[\begin{array}{cc}3 & -2 \\ 1 & 2\end{array}\right]$ find the corresponding eigenvectors and the eigenvalues. 12 marks

