NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

## DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_1 EXAMINATIONS

## COURSE CODE:

COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY 309
QUANTUM MECHANICS 1
3
( $2^{1} / 2$ HRS)
Answer question 1 and any other four questions

## QUESTION 1

(a)Show that the following are vector spaces over the indicated field:
(i)The set of real numbers over the field of real numbers. 4 marks
(ii)The set of complex numbers over the field of real numbers. 4 marks
(iii)The set of quadratic polynomials over the complex field. 4 marks
(b)Check whether the following vectors are linearly independent.

$$
2 i+3 j-k,-i+j+3 k \text { and }-3 i+2 j+k \quad 4 \text { marks }
$$

(c)Find the coordinates of the vector $\left[\begin{array}{cc}1 & 2 \\ -2 & i\end{array}\right]$ with respect to the basis

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

## QUESTION 2

(a) What is this wave function $\psi$ ?
(b) Mention the probability amplitude.
(c) Write the applications of $\psi$ ?
(d) Explain the term wave packet

3 marks
3 marks
3 marks
3mark

## QUESTION 3

(a) Write the function $h(x) e^{2 x} \sin x$ as a sum of odd and even functions. 4marks
(b) Evaluate the following integrals
(i) $\int_{-a}^{a} x^{2 n+1} d x, n=0,1,2, \ldots$
(ii) $\int_{-a}^{a} x^{2 n} d x, n=0,1,2, \ldots \quad 8$ marks

## QUESTION 4

Discuss the following
(a) Blackbody radiation 4 marks
(b) Photoelectric effect 4 marks
(c) Compton effect 4 marks

## QUESTION 5

A quantum-mechanical oscillator of mass $m$ moves in one dimension such that its energy eigenstate is given as;
$\psi(x)=\left(y^{2} / \pi\right)^{\frac{1}{4}} \exp \left(-y^{2} x^{2} / 2\right)$
with energy
$E=\hbar^{2} y^{2} / 2 m$
(a) Find the mean position of the particle. 6 marks
(a) Find the mean momentum of the particle. 6 marks

## QUESTION 6

What are the allowable eigenfunctions and energy eigenvalues of the infinite potential well?

$$
V(x)=\left\{\begin{array}{l}
0,-L \leq x \leq L \\
\infty, \text { elsewhere }
\end{array}\right.
$$

