NATIONAL OPEN UNIVERSITY OF NIGERIA

PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA
 FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE
OCT/NOV 2019 EXAMINATIONS

COURSE CODE:
COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY 309
QUANTUM MECHANICS 1
3
($2^{1 / 2}$ HRS)
Answer question 1 and any other four questions

QUESTION 1

(a) Differentiate between Odd and Even function
(4marks)
(b) What is inverse matrix?
(c) Given a function $\mathrm{h}(\mathrm{x})=e^{2 x} \sin x$. Find the Odd and even functions. (5marks)
(d) What is Blackbody radiation?
(e) Mention the properties of inner product of a vector space V.

QUESTION 2

(a) Prove that the function $f(x)=\sec x$ is an even function
(b) Differentiate between a vector space and norm of a vector
(c) Given the radiation of frequency $6 \times 10^{13} \mathrm{H}_{\mathrm{Z}}$ emitted by a blackbody per unit time, per unit area at $2500^{\circ} \mathrm{k}$. What is the value of Rayleigh-jeans formula?

QUESTION 3

(a) Find the change in wavelength of a proton scattered at an angle of 23^{0} after its collision with an electron initially at rest. (Take $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31}$ and $\mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$) (4 marks)
(b) Prove that the set

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\right\} \text { is linearly independent }
$$

(c) State Heisenberg Uncertainty principle

QUESTION 4

(a) Differentiate between orthogonal and orthonorrmal set
(b) Sketch a diagram of Odd and Even functions
(c) Normalize each vector in the set below

$$
\left\{\left(\begin{array}{c}
-2 \\
0 \\
4
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)\right\}
$$

QUESTION 5

(a) What is Hermitian matrix?
(b) Show that Sinmx and Sinnx are orthogonal $m \neq n,-\pi \leq x \leq \pi$
(c) If the matrix below is a proper orthogonal matrix. Find x.

$$
\left[\begin{array}{ll}
3 & x \\
1 & 2
\end{array}\right]
$$

(d) What is linear operator?

QUESTION 6

(a) Given that the ladder operators

$$
\mathrm{a}=\sqrt{\frac{m w}{2 \hbar}}\left(x+\frac{i p}{m w}\right) \quad \mathrm{a}^{+}=\sqrt{\frac{m w}{2 \hbar}}\left(x-\frac{i p}{m w}\right)
$$

Show that $\mathrm{aa}^{+}-\mathrm{a}^{+} \mathrm{a}=1$
(b) Given that
$\mathrm{a}=\sqrt{\frac{m w}{2 \hbar}}\left(x+\frac{i p}{m w}\right) \quad \mathrm{a}^{+}=\sqrt{\frac{m w}{2 \hbar}}\left(x-\frac{i p}{m w}\right)$, position and momentum operator are given by

$$
\hat{x}=\sqrt{\frac{m w}{\hbar}} x \quad \hat{p}=\sqrt{\frac{1}{m \hbar w}} \mathrm{p}
$$

Find the value of commutator $[\hat{x}, \hat{p}]$
(ii) For the ground state find $\left\langle\hat{x}^{2}\right\rangle$ and $\left\langle\hat{p}^{2}\right\rangle$
(c) Show whether or not the set $\left\{\binom{1}{1},\binom{-1}{-1}\right\}$ is a basis for two-dimensional Euclidean space.

