NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

OCT/NOV 2019 EXAMINATIONS

COURSE CODE:PHY 309COURSE TITLE:QUANTUM MECHANICS 1CREDIT UNIT:3TIME ALLOWED:(2½ HRS)

INSTRUCTION:

Answer question 1 and any other four questions

QUESTION 1

(a) Differentiate between Odd and Even function	(4marks)			
(b) What is inverse matrix?	(2marks)			
(c) Given a function $h(x) = e^{2x} sinx$. Find the Odd and even functions	. (5marks)			
(d) What is Blackbody radiation?	(2marks)			
(e) Mention the properties of inner product of a vector space V.	(9marks)			
QUESTION 2				
(a) Prove that the function $f(x) = \sec x$ is an even function	(3marks)			

	1 . \	Differentiate lastered a second a secon	F	
(D)	Differentiate between a vector space and norm of a vector ((5marks))

(c) Given the radiation of frequency $6 \ge 10^{13}$ Hz emitted by a blackbody per unit time, per unit area at 2500^{0} k. What is the value of Rayleigh-jeans formula? (4marks)

QUESTION 3

- (a) Find the change in wavelength of a proton scattered at an angle of 23^{0} after its collision with an electron initially at rest. (Take h= 6.626×10^{-34} m_e = 9.1×10^{-31} and C = 3×10^{8} m/s) (4 marks)
- (b) Prove that the set

$$\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\} \text{ is linearly independent}$$
(5 marks)

(c) State Heisenberg Uncertainty principle

(3marks)

QUESTION 4

- (a) Differentiate between orthogonal and orthonorrmal set (4marks)
- (b) Sketch a diagram of Odd and Even functions (4marks)

(c) Normalize each vector in the set below

 $\left\{ \begin{pmatrix} -2\\0\\4 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$

QUESTION 5

- (a) What is Hermitian matrix? (2marks) (b) Show that Sinmx and Sinnx are orthogonal $m \neq n$, $-\pi \leq x \leq \pi$ (4marks)
- (c) If the matrix below is a proper orthogonal matrix. Find x. (2marks)
 - $\begin{bmatrix} 3 & x \end{bmatrix}$
- (d) What is linear operator? (4marks)

QUESTION 6

(a) Given that the ladder operators

$$a = \sqrt{\frac{mw}{2\hbar}} \left(x + \frac{ip}{mw} \right) \quad a^* = \sqrt{\frac{mw}{2\hbar}} \left(x - \frac{ip}{mw} \right)$$

Show that
$$aa^+ - a^+a = 1$$
 (4marks)

(b) Given that $\mathsf{a} = \sqrt{\frac{mw}{2\hbar}} \left(x + \frac{ip}{mw} \right) \quad \mathsf{a}^* = \sqrt{\frac{mw}{2\hbar}} \left(x - \frac{ip}{mw} \right) \text{, position and momentum operator are}$ given by

$$\hat{x} = \sqrt{\frac{mw}{\hbar}} x \quad \hat{p} = \sqrt{\frac{1}{m\hbar w}} p$$

Find the value of commutator $[\hat{x}, \hat{p}]$ (2.5marks)

(ii) For the ground state find < \hat{x}^2 > and < \hat{p}^2 > (2.5marks)

(c) Show whether or not the set $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$ is a basis for two-dimensional Euclidean space. (3marks)

$$\lfloor_{1 2}\rfloor$$

(4marks)

```
;)
```