NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_2 EXAMINATIONS.co

COURSE CODE:	PHY311
COURSE TITLE:	KINETIC THEORY AND STATISTICAL MECHANICS
CREDIT UNIT:	2
TIME ALLOWED:	(2 HRS)

INSTRUCTION: Answer question 1 and any other three questions

QUESTION 1

(a) Define the following terms; (i) Most probable velocity (ii) Root-mean-square velocity [5 marks]

(b) Show that the most probable speed at which n(v) has its maximum value $V_P = \sqrt{\frac{2RT}{M}}$ [10marks]

(c) Show that the root mean square speed of gas molecule $V_{rms} = \sqrt{\frac{3RT}{M}}$ [10marks]

QUESTION 2

(a) Derive Dulong-petit's law on the basis of equipartition theorem [5marks]

(b) Show that for a perfect gas represented by a grand canonical ensemble, the probability of finding the subsystem with n atoms is given by Poisson distribution

 $\omega(n) = \frac{1}{n!} (n)^n e^{-\bar{n}}$ where \bar{n} is the number of atoms present [10marks]

QUESTION 3

(a) If twelve particles are distributed randomly between two boxes A and B with equal probability, then calculate

- (i) The probability of the distribution (8, 4)
- (ii) The probability of the most probable distribution
- (iii) The probability of least probable distribution.

(b) Find the probability that in tossing a coin 12 times we get (i) 4 heads 8 tails (ii) 6 heads 6 tails [6marks]

QUESTION 4

Three particles are to be distributed in four energy states *a*, *b*, *c* and *d* write down all the possible ways for such a distribution if the particles are (i) Fermions (ii) Bosons [15marks]

QUESTION 5

Let v_x , v_y , v_z represent the three Cartesian components of velocity of a molecule in a gas. Using symmetry consideration and equipartion theorem, deduce, expression for the following mean values in terms of K, T and m. (i) $\langle v_x \rangle$ (ii) $\langle \bar{v}_x^2 \rangle$ (iii) $\langle v_x v_z \rangle$ (iv) $\langle (v_x + bv_y)^2 \rangle$

[15marks]