NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_1 EXAMINATIONS ...

COURSE CODE:	РНУ313
COURSE TITLE:	MATHEMATICAL METHODS FOR PHYSICS I
CREDIT UNIT:	3
TIME ALLOWED:	(2 ¹ / ₂ HRS)

INSTRUCTION:

Answer question 1 and any other four questions

QUESTION 1

a.	What do you understand by a series?	3 mks
b.	Write the Cauchy integral formula.	2 mks
c.	Define the following:	
i)	Simple contour	2 mks
ii)	Loop	2 mks
iii)	Jordan curve Lemma	2 mks
d.	Explain the other test apart from the ratio test, which serves as a criterion for convergence	4 mks
e.	Mention three (3) rules that can be used for residue counting	3 mks
f.	What is an entire function	2 mks
g.	Explain a real valued function	2 mks
QUES'	ΓΙΟΝ 2	
a.	If $x = \frac{z + \dot{z}}{2}$, $y = \frac{z - \dot{z}}{2}$	
	Express $f(z) = 4x^2 + i4y^2$ by a formula involving the variables z and BAR z and	- Z 4 mks
b.	Define the following:	r mixo
i.	Laurent series	2 mks

ii Singularity

iii Single pole 2 mks

2 mks

iv Cauchy Residue 2 mks

QUESTION 3

8	ì.	Show that if $f(z)$ satisfies the Cauchy – Riemann equation Z_0 , so does $\{f(Z_0)\}^n$ for every		
		positive integer n	6 mks	
ł).	Show that the function $\sin(\dot{z})$ is nowhere analytic on \mathbb{C}	6 mks	
QUESTION 4				
8	ì.	What is the inverse image of a point	3 mks	
ł).	Express		
		$f(z) = z^5 + 4z^2 - 6 \text{ in polar form}$	3 mks	
C	2.	What do you understand by the sequence of complex number	3 mks	
C	1.	The ratio test is used as a criterion for convergence. Discuss	3 mks	
QUESTION 5				
	a.	Differentiate between the Domain and Range of a function	6 mks	
	1		C 1	
	b.	Write down how to find the domain of six (6) different functions	6 mks	
QUESTION 6				
Find the domain of the following:				
f	(v)	$-\frac{2x}{2}$	3 mks	
1	(A)	$y = \frac{1}{x^2 - 4}$	JHIKS	

$$y = \sqrt{(x - 7)}$$
 3 mks

$$y = In (x - 8)$$
 3 mks

Find the domain and range of the function $f(z) = X^2 + 2$ 3 mks