

# NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

# FACULTY OF SCIENCES 2021 Examinations

**Course Code: STT 311** 

Course Title: Probability Distributions II

**Credit Unit: 3** 

Time Allowed: 3 Hours

Total: 70 Marks

**Instruction:** Answer Question One (1) and Any Other 4 Questions

## **Question 1 (Compulsory)**

(a) State clearly the Chebyshev's Inequality (4 marks)

- **(b)** A sample of 3 balls taken from an urn is examined to determine whether the colour is red (R) or blue (B).
  - i. Determine the appropriate sample space for this experiment (2 marks)

Hence, state elements of the

- ii. Event  $E_1$  that exactly one of the balls picked is blue (2 marks)
- iii. Event  $E_2$  that the first ball picked is blue (2 marks)
- iv. Event  $E_3$  that there are exactly two red balls in the sample (2 marks)
- (c) Given that  $\mathbf{x}$  is a Bernoulli random variable, state the probability mass function of  $\mathbf{x}$  with probability of success as  $\mathbf{p}$  and probability of failure as  $(1-\mathbf{p})$  (2 marks)
- (d) Given the following moment generating functions (MGFs), determine the distribution of the random variable x having the MGFs. Hence or otherwise, find the mean of x.

i. 
$$M_x(t) = e^{8t+5t^2}$$
 (2 marks)

ii. 
$$M_x(t) = \frac{13}{13-t}$$
 (2 marks)

iii. 
$$M_x(t) = (1 - 5t)^{-6}$$
 (2 marks)

iv. 
$$M_x(t) = (0.75 + 0.25e^t)^{48}$$
 (2 marks)

#### **Question 2**

A semi-boarding school in Abuja has 30% female and 70% male students. The record shows that 20% of the female students and 40% of the male students are boarders while the rest are day students. If a boarding student is picked at random, determine the probability that the student is a male using your idea of Bayes' theorem. (12 marks)

## **Question 3**

A box of compact fluorescent lamps (CFLs) has 10 lamps of which 4 are defective due to vibration during vehicular transit from the factory. If two lamps are selected at random without replacement, find the probability that:

i. Both lamps are defective (3 marks)

ii. Both lamps are non-defective (3 marks)

iii. Only one lamp is defective (3 marks)

iv. At least one lamp is defective (3 marks)

## **Question 4**

An experiment involves planting 3 seedlings in a yard. Each of the seedings has independent chance to survive ( $\mathbf{S}$ ) or not survive ( $\mathbf{N}$ ) while the probability that each seedling will survive is 0.75. Let a random variable  $\mathbf{x}$  be the number of surviving trees after one year of planting.

(a) Construct a probability distribution for this experiment (6 marks)

(b) Hence, determine the expected value of the random variable x (6 marks)

#### **Question 5**

The joint density function of the continuous random variables  $\mathbf{x}$  and  $\mathbf{y}$  is given by

$$f(x,y) = \begin{cases} c \ x \ y, 0 \le x \le 1, 0 \le y \le 1 \\ 0, \ otherwise \end{cases}$$
, determine

(a) the value of c (4 marks)

(b) the marginal density function of **x** (4 marks)

(c) the marginal density function of y (4 marks)

## **Question 6**

The joint probability distribution of the number of taxi cabs and the number of buses that arrive the University terminus park per one-hour interval on a particular Monday morning is given below.

|                 | Number of Taxi Cabs |          |      |      |          |       |
|-----------------|---------------------|----------|------|------|----------|-------|
|                 |                     | 0        | 1    | 2    | 3        | Total |
| Number of Buses | 0                   | 4λ       | 0.09 | 0.06 | $\theta$ | β     |
|                 | 1                   | 0.08     | 0.03 | 0.14 | 0.12     | 0.37  |
|                 | 2                   | $\theta$ | 0.13 | 0.10 | λ        | 0.31  |
|                 | Total               | α        | 0.25 | 0.30 | 0.20     |       |

Determine the value of (i)  $\alpha$  (3 marks)

(ii)  $\beta$  (3 marks)

(iii)  $\theta$  (3 marks)

(iv)  $\lambda$  (3 marks)