NATIONAL OPEN UNIVERSITY OF NIGERIA
Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES
 April Examination 2019

Course Code:

Course Title:
Credit Unit:
Time Allowed:
Total:
Instruction:

STT311
Probability Distribution II
3
3 HOURS
70 Marks
ATTEMPT QUESTION NUMBER ONE AND ANY OTHER FOUR (4) QUESTIONS

1. (a) Give a brief definition of the following terms:
i. Random experiment
ii. Sample Space
iii. Event of a Sample Space
iv. Probability Measure
v. Random Variable
(b) Let X be a random variable with probability density function.

$$
f(x)=\left\{\begin{array}{cc}
c\left(1-x^{2}\right)-1, & -1<x<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

What is the value of c ?
(c) Given the joint probability distribution
$f(x, y, z)=\frac{x y z}{108} \quad$ for $x=1,2,3 ; y=1,2,3 ; z=1,2$
find
i. the joint marginal distribution of X and Y ;
ii. the joint marginal distribution of X and Z ;
iii. the marginal distribution of X;
iv. the conditional distribution of Z given $\mathrm{X}=1$ and $\mathrm{Y}=2$;
v. the joint conditional distribution of Y and Z given $X=3$
2. (a) The probability density function of X, the lifetime of a certain type of electronic device
(measured in hours), is given as $f(x)=\left\{\begin{array}{cc}\frac{a}{x^{2}} & x>10 \\ 0 & x \leq 10\end{array}\right.$
i. Find the value a
ii. Find $\mathrm{P}(\mathrm{X}>20)$

6 Marks

(b) Compute $\mathrm{E}(X)$ and $\operatorname{Var}(X)$, if X has a density function given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{4} x e^{-\frac{x}{2}} & x>0 \\
0 & \text { elsewhere }
\end{array}\right.
$$

3. (a) The density function of X is given by $f(x)=\left\{\begin{array}{cc}a+b x^{2} & 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{array}\right.$ and $\mathrm{E}(\mathrm{X})=0.6$,
i. \quad Find a and b.
ii. Find $E\left(X^{2}\right)$
(4 marks)
(b) The lifetime in hours of an electronic tube is a random variable having a probability density function given by $f(x)=\left\{\begin{array}{cc}x e^{-x} & x \geq 0 \\ 0 & \text { elsewhere }\end{array}\right.$.

Compute the expected value lifetime of such a tube
(c) Derive the moment generating function for a discrete random variable X with the following density function:
$f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1,2, \ldots$
4. (a) Given that events A and B are independent and that $P(A \mid B)=0.2$ and $P(B \mid A)=0.5$. Compute the probability $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$.
(2 marks)
(b) i. If two events, A and B , are such that $\mathrm{P}(\mathrm{A})=0.5, \mathrm{P}(\mathrm{B})=0.3$, and $P(A \cap B)=0.1$ Find $P(B \mid A)$
ii. You are given $P(A \cup B)=0.65$ and $P\left(A \cup B^{\prime}\right)=0.85$. Determine $P(A)$
(5 marks)
(c) Given that X_{1} and X_{2} are two events such that $P\left(X_{1}\right)=0.45, P\left(X_{1} \cup X_{2}\right)=0.68$. Find $\mathrm{P}\left(\mathrm{X}_{2}\right)$, when
i. $\quad X_{1}$ and X_{2} are mutually exclusive
ii. $\quad X_{1}$ and X_{2} are independent.
5. (a) Determine the value of k for which the function given by

$$
f(x, y)=k x y \quad \text { for } x=1,2,3,4 ; \quad y=1,2,3,4
$$

can serve as a joint probability distribution.
(b) If the joint probability density of X and Y is given by
$f(x, y)=\left\{\begin{array}{cc}\frac{1}{4}(2 x+y) & \text { for } 0<x<1,0<y<2 \\ 0 & \text { elsewhere }\end{array}\right.$
find
i. the marginal density of X;
ii. the conditional density of Y given $X=\frac{1}{4}$.
6. (a) The table below shows the probability distribution function of a random variable X ;

X	1	2	3	4	5
$\mathrm{P}(\mathrm{x})$	K	$1 / 12$	K	$1 / 2$	$1 / 12$

Find;
(i) k
(ii) $\mathrm{P}(\mathrm{X} \leq 2)$
(iii) $\mathrm{P}(3 \leq \mathrm{X}<5)$
(b) Let X be a random variable with probability function

$$
f(x)= \begin{cases}\frac{2 x}{12}, & x=1,2,3 \\ 0 \quad \text { elsewhere }\end{cases}
$$

Calculate
i. $\mathrm{E}(\mathrm{X})$
ii. $\operatorname{Var}(\mathrm{X})$

