NATIONAL OPEN UNIVERSITY OF NIGERIA
Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS

October Examination 2019

Course Code:
 Course Title:
 STT311
 Credit Unit:
 Probability Distribution II
 Time Allowed:
 Instruction:
 3
 3 Hours
 Answer Question Number One and Any Other Four Questions

1. (a) In a Probability distribution class of 50 students, there are 11 from management sciences, 19 sciences, 14 from Health sciences and 6 from education. One student is selected at random.
(i) What is the sample space of this experiment?
($\mathbf{2}$ marks)
(ii) Construct a random variable X for this sample space and find its space (2 marks)
(iii) Find the probability density function for the random variable X
(b) The probability density function of a random variable X is given by

$$
f(x)=\frac{1}{144}(2 x-1) \text { for } x=1,2,3 \ldots 12 \text {, }
$$

what is the cumulative distribution function of X
(6 marks)
(c) Show whether or not the real value function $g: R \rightarrow R$ defined by

$$
g(y)=\left\{\begin{array}{l}
1+|y| \text { if }-1<y<1 \\
0 \ldots \text { otherwise }
\end{array}\right.
$$

is a probability density function for some random variable Y
(10 marks)
2. (a) X is a continuous random variable with density function

$$
f(x)=\left\{\begin{array}{ll}
b e^{-b x} & x>0 \\
0 & \text { otherwise }
\end{array} \quad \text { where } b>0\right.
$$

If $M(t)$ is the moment generating function of X , then what is $M(-6 b)$?
(b) Find the moment generating function of a random variable Y having the probability density function given by

$$
f(y)= \begin{cases}e^{-y} & y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find the mean and variance of Y
(6 marks)
3. (a) State and prove Chebychev's inequality
(2 marks)
(b) The probability density function of a random variable X is

$$
f(x)= \begin{cases}630 x^{4}(1-x)^{4} & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

What is the exact value of $P(|X-\mu| \leq 2 \sigma)$? What is the approximate value of $P(|X-\mu| \leq 2 \sigma) \quad$ when one uses Chebychev inequality?
4. (a) Define the moment generating function of a random variable X.
(b) Does moment generating function always exist? Give reason.
(c) The P.M.F of a distribution is given as $p(X=x)=\frac{m!}{x!(m-x)!} p^{x} q^{m-x}, \forall x=0,1,2,3, \ldots, m$. Find the moment generating function of the distribution and use it to obtain the mean. (6 marks)
5. (a) If Y is a random variable with mean μ and variance σ, show that

$$
\begin{equation*}
\sigma^{2}=E\left(Y^{2}\right)-(\mu)^{2} \tag{i}
\end{equation*}
$$

(ii) $\quad \operatorname{Var}(a Y+b)=a^{2} \operatorname{Var}(Y)$

(3 marks)

(3 marks)
(b) Let a random variable Y has the density function $f(y)=\frac{2 y}{c^{2}}$ for $0<y \leq c$ and $\mathrm{f}(\mathrm{y})=0$ otherwise, for what value of c is the variance of Y equal 2?
6. (a) For what value of the constant k , is the real value function $g: R \rightarrow R$ given by $g(y)=\frac{k}{1+(y-\theta)^{2}},-\infty<y<\infty$ where θ is a real parameter, a probability density function for the random variable Y ?
(b) A lot of 8 TV sets include 3 defective. If 4 of the sets are chosen at random for shipment to a hotel. How many defective sets will they expect?

