

NATIONAL OPEN UNVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES SEPTEMBER, 2020 EXAMINATION

CHM 307: ATOMIC AND MOLECULAR STRUCTURE AND SYMMETRY COURSE UNIT: 3 TIME ALLOWED 3 HOURS

INSTRUCTIONS: ANSWER QUESTION 1 AND ANY FOUR QUESTIONS

QUESTION 1

a. Using the Molecular Orbital Model, explain why some molecules do not exist. (7 marks)

- b. Write equation for the 3D Schrodinger wave equation. (5marks)
- c. Write short note on angular momentum. (7marks)
- d. Construct a molecular orbital diagram for He₂ (6 marks)

QUESTION 2

a. State the steps to be taken in writing resonance structures.(6 marks)

b. Write resonance structures for each of the following

- (i) ozone (3 marks)
- (ii) benzene (3 marks)
- (iii) the allyl cation. (3 marks)

QUESTION 3

3a. Explain the following terms and express each mathematically

	· ·	.
(i)	Rusell-Saunder's coupling	(2.5 marks)
(ii)	JJ coupling	(2.5 marks)
(iii)	Nuclear coupling	(2.5 marks)
3b. Explain the following terms		
(i)	spin-spin coupling	(2.5 marks)
(ii)	orbit-orbit coupling	(2.5marks)
(iii)	spin-orbit coupling	(2.5marks)

QUESTION 4

4a. Briefly define bond order and show the relationships between it and each of:bond dissociation energy, bond length and force constant.(7 marks)

b. Draw molecular orbital energy diagrams for diatomic molecules. (8 marks)

QUESTION 5

5a. Define wave function. (7 marks)

b. Explain the usefulness of wave function, nature of wave function

and uncertainty principle. (8 marks) QUESTION 6

- a. Draw the diagram for the quantized energy levels of a particle in a 3D Schrodinger (7 marks)
- b. Explain the theory of rotational spectroscopy. (8 marks)