

NATIONAL OPEN UNVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES OCTOBER/ NOVEMBER 2019_2 EXAMINATION

COURSE CODE: CHM 307 COURSE TITLE: ATOMIC AND MOLECULAR STRUCTURE AND SYMMETRY CREDIT: 3 UNIT TIME ALLOWED: 3 HOURS Instruction: Answer question 1 and any other four questions.

QUESTION 1 (22 marks)

A(i). State the theory of rotational spectroscopy	(2 marks)
A(ii) State the requirements for rotational spectrum from a molecule (to first order)	(2 marks)
b. Give the differences between valence bond theory and molecular orbital theory	(4 marks)
c. Define the following terms:	
i. valence bond theory	(2 marks)
ii. Resonance	(2 marks)
iii. Angular momentum	(2 marks)
iv. Bond order	(2 marks)
d. What is the wavelength of a 100eV electron	(2 marks)?
e Explain the trend for the variation of atomic radius and ionization energy in the periodic	table (2 marks)
f. Explain the difference between bonding and antibonding orbitals	(2 marks)
QUESTION 2 (12 marks)	
a. Discuss the shortcomings of the Aufbau Principle	(4 marks)
b. Write out the electronic configuration of four out of the following transition metals	(8 marks)
 i. Cerium (Atomic No: 58) ii. Thorium (Atomic No: 90) iii.Gold (Atomic No: 79) iv. Mercury (Atomic No: 80) 	

v. Silver (Atomic No: 47)

QUESTION 3 (12 marks)

a. Copy and complete the table below (7 marks):

Series	n ₂	n ₁	Region in electromagnetic	Wavelength (nm)
			spectrum	
	1	2,3,4,5		
	2		Visible	
•••••	3	4,5,6,7		
	4			4051
	5	6,7,8,9	Infrared	

b. State the steps you would take in writing resonance structures

QUESTION 4

- a. Write out the ground state electron configurations of the following elements in orbital box notation showing electron spins (6 marks).
 - i. Carbon
 - ii. Nitrogen
 - iii. Oxygen
 - iv. Fluorine
 - v. Chlorine

b. Explain the trend of atomic radius and ionization energy in the periodic table	(3 marks)
c. State Hund's Rule	(3 marks)

c. State Hund's Rule

QUESTION 5

ai. List all o	lifferent type	es of quantum	m numbers			(2 marks)
ii. Write a	a short note o	on three of the	nese types of	quantum numb	pers	(6 marks)
b. Write ou	t the hybrid o	orbitals and	shapes of fou	r of the follow	ing molecules	(4 marks)
i.	CH ₃ Cl	ii. BF3	iii. PF5	iv. BeF ₂	v. IOF5	

QUESTION 6

a. Write short note on four of the following	(8 marks):
--	------------

i. molecular orbital

5 marks)

- ii. atomic spectra
- iii. heat capacity
- iv. Russell-Saunders (or L S) coupling
- v. J-J coupling

b. Write out the properties of molecular orbital	(2 marks)
c. Give any five appropriate combinations of atomic orbitals	(5 marks)