

NATIONAL OPEN UNVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES **DEPARTMENT OF PURE & APPLIED SCIENCE** 2021_2 EXAMINATION

CHM 309 APPLIED SPECTROSCOPY

COURSE CREDIT : 2 UNIT

TIME ALLOWED 2 HOURS

INSTRUCTIONS: ANSWER QUESTION 1 AND ANY OTHER 3 QUESTIONS

QUESTION 1

(a) List four (4) uses/applications of NMR spectroscopy [4 marks]

(b) What is the fundamental principle behind Mass spectroscopy? [7 marks]

- (c) Draw the block diagram of a Mass spectrometer and explain the condition of it operation [8 marks]
- (d) Give brief accounts of the following
 - [5 marks] i. The Molecular Ion. [5 marks

ii. The Mass Spectrum

QUESTION 2

(a) Explain how you can introduce a sample into ionization source using chromatography.

[2 marks]

b) Briefly explain how the following sample ionization methods are employed in Mass spectroscopy:

[2 marks each]

i. Electron Impact Ionization (EI) ii. Chemical Ionization (CI)

iii. Fast Atom Bombardment (FAB) iv. Electrospray Ionization

v. Desorption Techniques

(c) Describe how any one of the following Mass Analysers function. [3 marks each]

i. Magnetic Sector	ii. Quadrupole Mass Analyser
iii. Ion Trap Mass Analyser	iv. Tandem Mass Analysers

QUESTION 3

(a) How does a Detector works under Mass spectroscopy?		[2 marks]	
ii. How can you interpret data from Mass spectrometer?.		[3 marks]	
(b) Explain how McLafferty rearrangement occurs in carbonyl compounds.		[5 marks]	
(c) Write on the fragmentation patterns of the following:		[5 marks]	
i. Aromatic Hydrocarbons	ii. Halides		
QUESTION 4			
(a) i. Write briefly on Positive Ion Chemical Ionization (PICI) as it affects GC-M		S. [3 marks]	
ii. Why is LC-MS interfacing more difficult than that of GC-MS?		[2 marks]	
(b) Give a brief account of the following interfaces used in LC-MS:		[6 marks]	
i. Thermospray	ii. Electrospray (ES) Ionization		
iii. Atmospheric Pressure Io	nization		
(c) Write note on 'Drug Discovery' and Spectroscopy.		[4 marks]	
QUESTION 5.			
(a) Write short notes on Nuclei type	1-3 [6marks]		
(b) Outline four reasons why Tetran	nethysilane is used as Reference material in		
NMR spectroscopy [4 ma	arks]		
(c) Write short notes on the following	ng		
i. Spin-Spin Coupling	ii. Signal Intensity.	[5 marks]	