

NATIONAL OPEN UNIVERSITY OF NIGERIA UNIVERSITY VILLAGE, PLOT 91 CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESS WAY, JABI -ABUJA.

FACULTY OF SCIENCES DEPARTMENT OF PURE AND APPLIED SCIENCE OCTOBER/NOVEMBER, 2019 SECOND SEMESTER EXAMINATION

COURSE CODE:	CHM 391
COURSE TITLE:	PRACTICAL CHEMISTRY V – INORGANIC AND ANALYTICAL
CREDIT UNIT:	TWO (2)
TIME:	2 HOURS
INSTRUCTION:	Answer question one and any other three questions.

QUESTION ONE

1a. State various types of possible transitions in organic molecules.2 marks

1b. In an experiment to determine the concentration of a metal in an environmental sample, it was required to prepare a calibration curve of the UV-Visible absorbance of different concentrations of its coloured complex. Different volumes of 0.005 mol/dm³ stock solution of the complex were diluted to 50 cm³ mark in a volumetric flask.

i. Copy and complete the following table:

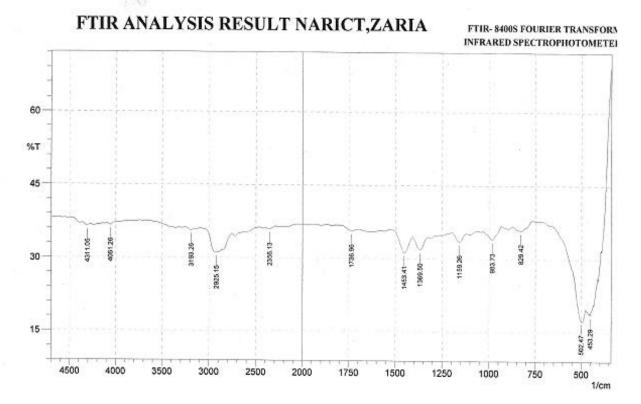
	Volume (cm ³) of stock solution of metal complex diluted	Concentration (mol/dm ³) of metal complex	Absorbance
1	5.0	0.0005	0.022
2	10.0		0.045
3	15.0		0.063
4	20.0		0.085
5	25.0		0.107
6	30.0		0.122

(ii) Use your completed table in (a) to plot the calibration curve of the absorbance versus concentration of metal complex.5 marks

5 marks

(iii)	If the absorbance of the metal in the environmental sample is 0.060 deter concentration of the metal.	mine the
		2 marks
1ci. Ment	tion two requirements for Colorimetry determination	2 marks
	e the relationship between the amounts of visible radiation absorbed by a d and the concentration of the analyte in the solution.	coloured
		1 mark
1ciii. Wh	at happens when a molecule absorbs radiation at the infrared region?	1 mark
1di. Com	plete the table below:	3 marks

Type of transition	Region of radiation absorption	
	Far infrared/microwave	
Vibration		
Electronic		


1dii. What are the two major types of fundamental vibrations in an organic molecule?	1 mark

1e. State one major application of Atomic Absorption Spectroscopy. 1 mark

1f. Describe how inclusion can be removed from a precipitate.2 marks

QUESTION TWO

2a. Below is an infrared spectrum of an unknown organic compound. Using the table of the characteristic infrared absorption bands of organic functional groups provided below, identify the functional groups present in this organic compounds.

CHARACTERISTIC INFRARED ABSORPTION BANDS OF FUNCTIONAL GROUPS

Class of compounds	Absorption cm ⁻¹	Intensity	Assignment
Alkanes and Akyls	2850 - 3000	S	C – H stretch
	1450 - 1470	S	C- H bend
	1370 - 1390	m	$CH_{2,}C - H$ bend
	1365 +1395	m	-CH(CH ₃) ₃ bend
	Two bands		
	715 - 725	W	-(CH ₂)n bend
Alkenes	3020-3140	w-m	=C-H Stretch
	1640-1670	vw-m	C=C Stretch
	910+990	m+s	=C-H bend
	Two bands		
	885-895	S	=C-H bend
	665-730	m-s, broad	=C-H bend
	960-980	S	=C-H bend

	790-840	S	=C-H bend
Alkynes	3265-3335	s	=C-H Stretch
T HIR Y HOS	2100-2140	m	C=C Stretch
	610-700	s	=C-H bend
	2190-2260	VW-W	C=C Stretch
Ethers	1085-1150	S	C-O-C Stretch
	1020-1075 and	m	=C-O-C sym and
	1200-1275		asym stretch
	(Two bands)		
Aldehydes	2700-2725	m	H-C=O Stretch
	1720-1740	s	C=O Stretch
	1685-1710	S	C=O Stretch
Corbonylia asida	2500-3500	s bend	O-H Stretch
Carboxylic acids	1710-1715	s, broad	C=O Stretch
	1680-1710	s, broad	C=O Stretch
	1000-1710	s, 010au	
Alcohols	3300 - 3400	s, broad	O – H stretch
	1125 - 1205	m - s	C –O stretch

Intensity abbreviations: vw = very weak, w = weak, m = medium, s = strong, vs = very strong

9 marks

2b. Explain briefly the principle of infrared Spectroscopy.

6 marks

QUESTION THREE

3a. A laboratory analysis was conducted to determine the amount of aspirin (2-acetylbenzoic acid) in a commercial aspirin product using UV-Visible Spectroscopic method. The commercial aspirin was complexed with sodium hydroxide and iron (iii) Solution to form the salicylate dianion (the intensity of the colour of the complex is directly related to the concentration of aspirin present) and the absorbance of this complex determined. Five series of solutions with different aspirin concentrations was prepared and labeled A-E and complexed. The absorbance of each solution was measured. Using the information below

- (i) Construct a calibration curve
- (ii) Use the calibration curve to determine the amount of aspirin in the commercial aspirin product. 4 marks

Concentrations of standard	Absorbances of standard	Standard solutions
solution (mg/ml)	solution	
0.05	0.2	Α
0.10	0.4	В
0.15	0.6	С
0.20	0.8	D
0.25	1.0	Е

The absorbance of the commercial aspirin product is 0.5

3bi. Describe briefly the types of molecules that can absorb UV-Visible radiation. 2 marks

3bii. What are the applications of UV-Visible spectroscopy3 marks

QUESTION FOUR

4a. Write briefly on the principle of Atomic Absorption Spectroscopy.6 marks

4b. The concentration of magnesium in tap water is to be determined by employing Atomic Absorption Spectroscopy (AAS) to measure the absorbance of magnesium in tap water. If a set of standard solutions of magnesium was prepared as given in the table below, and their absorbance obtained;

- i. Prepare a calibration curve of the magnesium standard solutions and 6 marks
- ii. determine from the calibration curve the concentration of magnesium in the tap water if the absorbance of the magnesium in the tap water is 0. 2

3 marks

6 marks

Concentration of magnesium standard solutions (PPM)	Absorbance of magnesium standard solutions
2.50	0.2
4.500	0.3
6.500	0.5
8.500	0.7
10.500	0.9

QUESTION FIVE

5ai. Below is a table of values obtained for the determination of total alkalinity in a water sample, use this table to calculate the total alkalinity of a 100 ml water sample titrated with 0.02 M H₂SO₄.

NO of titration	Volume of	Initial burette	Final burette	Volume of
	sample (mL)	reading	reading	Sulphuric (mL)
1	100	0.00	8.50	8.50
2	100	0.00	8.30	8.30
3	100	0.00	8.30	8.30

6 marks

5aii. Mention the indicators used to detect the presence of the following sources of alkalinity in water samples.

- ^{i.} OH⁻
- ^{ii.} HCO³⁻

2 marks

5aiii. Give two significance and application of alkalinity.2 marks

5bi. Describe briefly the term Gravimetric Analysis.3 marks

5bii. State the uses of gravimetric analysis.

2 marks