

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021_2 Examinations.

Course Code:	MTH301
Course Title:	Functional Analysis I
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One (1) and Any Other 4 Questions

(1) (a) Define the followings:

(i) Convergent Sequence in a metric space (2 Marks)(ii) closed, open, half open and infinite intervals on the real line. (4 Marks)

(b) Let (X,d) be a metric space. Prove that a subset A of X is closed in (X, d) if and only if every convergent sequence of points in A, converges to a point in A. In particular, prove that A is closed in (X, d) if and only if $a_{n \to x}$, where $x \in X$ and a_n is a sequence of points in A, for all n, implies that $x \in A$. (8 Marks)

(c) let (X, d) and (Y, d_1) be metric spaces and f a mapping of X into Y. Let τ and τ_1 be the topologies determined by d and d_1 respectively. Prove that $f: (x, \tau) \to (y, \tau_1)$ is continuous if and only if $x_n \to x \to f(x_n) \to f(x)$. That is if $x_1, x_2, ..., x_n$... is a sequence of points in (X, d) converging to x, then the sequence of points $f(x_1), f(x_2), ..., f(x_n)...$ in (Y, d_1) converges to x. (8 Marks)

(2) (a) Define the followings:

(i) a metricable topological space	(2 Marks)
(ii) Euclidean space	(2 Marks)
(iii) Absolute value	(2 Marks)
(iv) Norm of a vector.	(2 Marks)
(b) Let $x \in \Re^n$ and $\mathcal{E} > 0$. Prove that the set $B(x, \varepsilon)$	$= \{y \in \Re^n : d(x, y) < E\}$ is open.

(4 Marks)

 (3) Define the following (i) An interior point (ii) Boundary point (iii) Closure of a subset of a set (iv) Accumulation point (v) Closed set (vi) Interior of a set. 	(2 Marks) (2 Marks) (2 Marks) (2 Marks) (2 Marks) (2 Marks)	
(4) (a) Define the followings (i) Naishbourhood of a point of a matric space		() Marta)
(i) Neighbourhood of a point of a metric space		(2 Marks)
(ii) Connected topological space		(2 Marks)
(iii) Open cover for a subset S of a metric space (X	(2 Marks)	
(iv) Compact subset of a metric space.		(2 Marks)

(b) Write out two examples of compact subsets of a metric space (X, d). (4 Marks)

(5) Write out two examples of the neighbourhood of the point p in a metric space.

(3 Marks each)

(b) Let (K, d) be a compact metric space. Prove that every sequence in K has a convergent subsequence. (6 Marks)

(6) For any vector $X \in \Re^n$, state the theorems concerning

(i) the norm, for all $x, y \in X, \alpha \in \Re$.	(4 Marks)
(ii) the metric d, for all $x, y, z \in X \in \Re^n$.	(4 Marks)
(iii) Inner product, for all x, y, y_{1} , and $y_2 \in X$ and $\alpha \in \Re$.	(4 Marks)