

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_2 Examinations

Course Code:	MTH301
Course Title:	Functional Analysis I
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One (1) and Any Other 3 Questions

(1) (a) Define the followings:

(i) convergent Sequence in a metric space	(3 Marks)
(ii) closed, open, infinite intervals on the real line.	(3 Marks)

(b) Let (X,d) be a metric space. Prove that a subset A of X is closed in (X, d) if and only if every convergent sequence of points in A, converges to a point in A. In particular, prove that A is closed in (X, d) if and only if $a_{n \to x}$, where $x \in X$ and a_n is a sequence of points in A, for all n, implies that $x \in A$. (9 Marks)

(c) Let (X, d) and (Y, d_1) be metric spaces and f a mapping of X into Y. Let τ and τ_1 be the topologies determined by d and d_1 respectively. Prove that $f: (x, \tau) \to (y, \tau_1)$ is continuous if and only if $x_n \to x \to f(x_n) \to f(x)$. That is if $x_1, x_2, ..., x_n$... is a sequence of points in (X, d) converging to x, then the sequence of points $f(x_1), f(x_2), ..., f(x_n)...$ in (Y, d_1) converges to x. (10 Marks)

(2) (a) Define the followings:

(i) a metricable topological space	(3 Marks)
(ii) Euclidean space	(3 Marks)
(iii) Absolute value	(3 Marks)
(iv) Norm of a vector.	(3 Marks)
(b) Let $x \in \Re^n$ and $\mathcal{E} > 0$. Prove that the set $B(x, \varepsilon) = \{y \in \Re^n : d(x, y) \in \Re^n : d(x, y) \}$	$\langle E \rangle$ is open.
	(3 Marks)

(3) Define the following	
(i) an interior point	(1 marks)
(ii) boundary point	(2 marks)
(iii) closure of a subset of a set	(3 marks)
(iv) accumulation point	(3 marks)
(v) closed set	(3 marks)
(vi) interior of a set.	(3 Marks)
(4) (a)(i)Totally bounded metric space	(3 Marks)
(ii) Sequentially compact metric space	(3 Marks)
(b) Let X be a metric space and let Y be a subspace of X. Prove that	
(i) If X is compact and Y is closed in X, then Y is compact.	(4 Marks)
(ii) If Y is compact, then it is closed in X.	(5 Marks)
(5) a(i) Define a topological space	(4 Marks)
(ii) Give three examples of topological spaces	(6 Marks)

(b) Let (K, d_K) be a compact metric space. Let (Y, d_Y) be any metric space and let $f: K \to Y$ be continuous. Prove that f(K) is compact. (5 Marks)

(6) a(i) If (A, d_A) and (B, d_B) are metric spaces, when is a function

 $f: A \rightarrow B$ said to be continuous?

(3 Marks)

(ii) Let f and g be real-valued functions with domain(f) = Range (g) = D $\subset \mathcal{R}^N$. If $\lim_{x \to x_0} f(x) = l$ and $\lim_{x \to x_0} g(x) = m$ then state the three limit theorems concerning the sum, product and quotient of the above function. (6 Marks)

(b) Given the function $f: \Re^2 \to \Re$ and $(x_0, y_0) = (1,3)$. Compute the limits of the following functions as $(x, y) \to (1,3)$:

(i)
$$\lim_{(x_0, y_0) \to (1,3)} f(x, y)$$
, if $f(x, y) = \frac{2x}{x^2 + y^{2+1}}$. (3
Marks)

(ii)
$$\lim_{(x_0, y_0) \to (1,3)} f(x, y)$$
, if $f(x, y) = x^2 + y^2 + 1$. (3
Marks)