

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES November Examination 2018

Course Code: Course Title: Credit Unit: Time Allowed: Total: Instruction:	MTH301 Functional Analysis I 3 3 HOURS 70 Marks ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUI	ESTIONS	
1. (a) Let c $f: X \to Y$ be a function between topological spaces X and Y. Show that f is continuous if			
and only if	$f(CI(A) \subseteq CI(f(A)))$ for all $A \subseteq X$	(7 marks)	
(b) Let X be a topological space and $U \subseteq A \subseteq X$. Suppose U is open in A and A is open in X.			
Show that U	is open in X	(2marks)	
(c) Define the fo	ollowing terms (i) Relative Topology (ii) Metric Space	(6 _{marks)}	
(d) (i) State two types of metric spaces with one example each (ii) Define closed sphere			
		(7marks)	
2. (a) Define an ope	(3marks)		
(b) When is a set	(3marks)		
(c) Let X and Y be two metric spaces and $f: X \rightarrow Y$ be a function. Show that f is continuous. <i>iff</i>			
$f(\overline{A}) \subseteq \overline{f(A)}$	for all $A \subseteq X$	(6marks)	
3. (a) Define continu	(3marks)		
(b) Let $f: X \to Y$ be a continuous map and let (x_n) be a sequence in X converging to $x \in X$.			
Show that ($f(x_n)$ in Y converges to $f(x) \in Y$	(6marks)	

(c) Define Homeomorphism between topological spaces (3marks)

4. (a) Let X be a topological space. Show that the identity map on X is a homeomorphism. (4marks)
(b) Let f: X → Y and g: Y → Z be homeomorphisms. Show that

 $g \circ f : X \to Z$ is a homeomorphism (4marks)

(c) Let X be a topological space and $A \subseteq X$. Show that

 $CI(A) = \{x \in X : \text{every neighbourhood of x meet A}\}$ (4marks)

- 5. (a) Let X be a topological space. What is a cover of X?(3marks)(b) When is a topological space compact?(2marks)
 - (c) Show that every cover of topological space X has a finite subcover. *iff* X is compact. (7marks)
- 6. (a) Let $f: X \to Y$ be a continuous map of topological spaces with X compact.

Show that f(X) is compact.	(6marks)
(b) What are separable spaces?	(3marks)
(c) When is a topological space said to be dense?	(3marks)