

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS October Examination 2019

Course Course Credit Time A Instru	e Code: e Title: Unit: Allowed ction:	MTH 301 Functional Analysis I 3 I: 3 Hours Answer Question Number One and Any Other Four Ques	tions
1.	(a) Def	ine the following terms:	
	(i)	Let X be a topological space. When is X said to be connected?	(4 marks)
	(ii)	Compact set	(3 marks)
	(iii)	Sequentially compact set.	(3 marks)
	(b)	Give an example of when a topological space X is not connected	ed. (4 marks)
	(c) Let (X, d) be a metric space. Show that a subset A of X is closed in (X, d) if an		
	only if every convergent sequence of points in A converges to a point in A. (In		
	order words, A is closed in (X, d) if and only if $a_n \to x$ where $x \in X$ and a_n		$x \in X$ and a_n is a
		sequence of points in A \forall n implies that x \in A).	(8 marks)
2.	(a) (i) l	Define a metric space X.	(4 marks)
	(ii)	Let X be a metric space. Define a ball B of radius r around	
a point $x \in X$.		a point $x \in X$.	(4 marks)
	(b) Giv	e two examples of metric spaces with metric defined.	(4 marks)
3.	(a) Def	ine a topology τ on a set X consists of subsets of X.	(3 marks)
	(b) Prove that a set C in a topological space is a closed set if and only if it contains		
	all	its limit points.	(9 marks)

- 4. (a) State Heine-Borel theorem. (2 marks)
 (b) State axioms of addition of a real number system (ℜ, +, ·). (3 marks)
 (c) Let (X, d) and (Y, d₁) be metric spaces and f is a mapping of X into Y. Let τ and τ₁ be the topologies determined by d and d₁ respectively. Show that f(X, τ) →(Y, τ) is continuous if and only if x_n → x ⇒ f(x_n) → f(x): that is if x₁, x₂,...x_n,... is a sequence of points in (X, d) converging to x, then the sequence of points f(x₁), f(x₂),...f(x_n),... in (Y, d₁) converges to f(x). (7 marks)
- 5. (a) Define a separated set T ⊂ S, where T is a subspace of a topological space S. (4 marks)
 (b) Prove that a subspace T of a topological space S is disconnected if and only if it is separated by some open subsets U, V of S. (8 marks)
- 6. State the axioms of multiplication and order axiom of a real number system (ℜ, +, ·).
 (12 marks)