NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES
 April/May 2019 Examinations

Course Code:
Course Title:
Credit Unit:
Time Allowed:
Total:
Instruction:

MTH304
Complex Analysis I
3
3 Hours
70 Marks
Answer Question One (1) and Any Other 4 Questions

1. (a) Given that $z_{1}=a+i b, z_{1}=c+i d$, then

$$
\text { Prove that (i) } \overline{z_{1+}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}
$$

(6 marks)
(ii) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(6 marks)
(b) (i) If $x=\cos \theta+i \sin \theta, y=\cos \phi+i \sin \phi$, prove that

$$
\begin{equation*}
\frac{x-y}{x+y}=i \tan \left(\frac{\theta-\phi}{2}\right) \tag{7marks}
\end{equation*}
$$

(ii) Find the modulus of the complex number $\frac{1+2 i}{1-(1-i)^{2}}$
2. (a) Prove that $u=x^{2}-y^{2}-2 x y-2 x+3 y$ is harmonic
(b) If $a=\cos \theta+i \sin \theta$, prove that $1+a+a^{2}=(1+2 \cos \theta)(\cos \theta+i \sin \theta)(7$ marks $)$
3. (a) Let $z=x+i y$, find the real and imaginary parts of the following complex functions
(i) $f(z)=z^{2}$
(ii) $f(z)=\frac{1}{z}$
(b) Hence, show that 3(a) (i) and (ii) satisfy the Cauchy-Riemann equations
4. (a) Evaluate each of the following using theorems on limits

$$
\text { (i) } \lim _{z \rightarrow 1-i}\left(\frac{z^{2}+4 z+3}{z+1}\right)
$$

(ii) $\lim _{z \rightarrow-2 i} \frac{(2 z+3)(z-1)}{z^{2}-2 z+4}$
(b) Differentiate the following complex functions from the first principles
(i) $f(z)=z^{2}+z$
(3 marks)
(ii) $f(z)=\frac{1}{z}$ (3 marks)
5. (a) Let $e^{i z}=\cos z+i \sin z$, prove that $\cos z=\frac{e^{i z}+e^{-i z}}{2}$
(b) Express $\frac{(\cos \theta+i \sin \theta)^{8}}{(\sin \theta+i \cos \theta)^{4}}$ in the form $(x+i y)$
(6 marks)
(6 marks)
6. (a) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $y=x$.

(4 marks)

(b) Evaluate $\int_{0}^{2+i}(\bar{Z})^{2} d z$ along the real axis from $z=0$ to $z=2$ and then along the line parallel to $y-\operatorname{axis} z=2$ to $z=2+i$
(8 marks)

