

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES April/May 2019 Examinations

Course Code:	MTH304
Course Title:	Complex Analysis I
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One (1) and Any Other 4 Questions

1. (a) Given that $z_1 = a + ib$, $z_1 = c + id$, then

Prove that (i) $\overline{z_{1+}z_2} = \overline{z_1} + \overline{z_2}$	(6 marks)
(ii) $ z_1 z_2 = z_1 z_2 $	(6 marks)
(b) (i) If $x = \cos \theta + i \sin \theta$, $y = \cos \phi + i \sin \phi$, prove that	

$$\frac{x-y}{x+y} = i \tan\left(\frac{\theta-\phi}{2}\right)$$
(7 marks)

(ii) Find the modulus of the complex number
$$\frac{1+2i}{1-(1-i)^2}$$
 (3 marks)
2. (a) Prove that $u = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic (5 marks)
(b) If $a = \cos \theta + i \sin \theta$, prove that $1 + a + a^2 = (1 + 2\cos \theta)(\cos \theta + i \sin \theta)$ (7 marks)

3. (a) Let z = x + iy, find the real and imaginary parts of the following complex functions

(i)
$$f(z) = z^2$$
 (ii) $f(z) = \frac{1}{z}$ (6 marks)

(b) Hence, show that 3(a) (i) and (ii) satisfy the Cauchy-Riemann equations (6 marks)

4. (a) Evaluate each of the following using theorems on limits

(i)
$$\lim_{z \to 1-i} \left(\frac{z^2 + 4z + 3}{z + 1} \right)$$
 (3 marks)

(ii)
$$\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2-2z+4}$$
 (3 marks)

(b) Differentiate the following complex functions from the first principles

(i)
$$f(z) = z^2 + z$$
 (3 marks)
(ii) $f(z) = \frac{1}{z}$ (3 marks)

5. (a) Let
$$e^{iz} = \cos z + i \sin z$$
, prove that $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ (6 marks)

(b) Express
$$\frac{(\cos \theta + i \sin \theta)^8}{(\sin \theta + i \cos \theta)^4}$$
 in the form $(x + iy)$ (6 marks)

6. (a) Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path y = x. (4 marks)

(b) Evaluate $\int_0^{2+i} (\bar{z})^2 dz$ along the real axis from z = 0 to z = 2 and then along the line parallel to y-axis z = 2 to z = 2 + i (8 marks)