

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES November 2018 Examinations

Course Code: Course Title:	MTH304 Complex Analysis I
Course The: Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One (1) and Any Other 4 Questions

1. (a) Given that $z_1 = a + ib$, $z_1 = c + id$, then

Prove that (i) $\overline{z_{1+}z_2} = \overline{z_1} + \overline{z_2}$ (6 marks)

(ii)
$$|z_1 z_2| = |z_1| |z_2|$$
 (6 marks)

(b) (i) Given that
$$z_1 = 2 + i$$
 and $z_2 = 3 - 2i$, then evaluate $\left|\frac{2z_2 - z_1 - 5 - i}{2z_2 - z_2 + 3 - i}\right|^2$ (4 marks)

- (ii) Find the square root of the complex number 5 + 12i (6 marks)
- 2. (a) Show that the complex function f(z) = z³ is harmonic (6 marks)
 (b) If z₁ = r₁(cos θ₁ + i sin θ₁) and z₂ = r₂(cos θ₂ + i sin θ₂), prove
 - (i) $z_1 z_2 = r_1 r_2 \{ \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \}$ (3 marks)

(ii)
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \{ \cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \}$$
 (3 marks)

3. (a) Let z = x + iy, find the real and imaginary parts of the following complex functions

(i)
$$f(z) = z^2$$
 (ii) $f(z) = \frac{1}{z}$ (6 marks)

(b) Hence, show that 3(a) (i) and (ii) satisfy the Cauchy-Riemann equations (6 marks)

4. (a) Evaluate each of the following using theorems on limits

(i)
$$\lim_{z \to 1+i} (z^2 - 5z + 10)$$
 (3 marks)

(ii)
$$\lim_{z \to -2i} \frac{(2z+3)(z-1)}{z^2-2z+4}$$
 (3 marks)

(b) Differentiate the following complex functions from the first principles

(i)
$$f(z) = z^2 + z$$
 (3 marks)

(ii)
$$f(z) = \frac{1}{z}$$
 (3 marks)

5. (a) Let
$$e^{iz} = \cos z + i \sin z$$
, prove that (i) $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ (4 marks)

(ii)
$$\sin z = \frac{e^{iz} + e^{-iz}}{2}$$
 (4 marks)

(b) Hence, show that
$$sin^2z + cos^2z = 1$$
 (4 marks)

6. (a) Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path (i) y = x (ii) $y = x^2$. (8 marks)

(b) Evaluate $\int_0^{2+i} \bar{z} \, dz$ along the real axis from z = 0 to z = 2 and then along the line parallel to y-axis z = 2 to z = 2 + i (4 marks)