NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES

November 2018 Examinations

Course Code:
Course Title:
Credit Unit:
Time Allowed:
Total:
Instruction:

MTH304
Complex Analysis I
3
3 Hours
70 Marks
Answer Question One (1) and Any Other 4 Questions

1. (a) Given that $z_{1}=a+i b, z_{1}=c+i d$, then

Prove that (i) $\overline{z_{1+}+Z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
(ii) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(b) (i) Given that $z_{1}=2+i$ and $z_{2}=3-2 i$, then evaluate $\left|\frac{2 z_{2}-z_{1}-5-i}{2 z_{2}-z_{2}+3-i}\right|^{2}$
(ii) Find the square root of the complex number $5+12 i$
2. (a) Show that the complex function $f(z)=z^{3}$ is harmonic
(b) If $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$, prove
(i) $z_{1} z_{2}=r_{1} r_{2}\left\{\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right\}$
(ii) $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left\{\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right\}$
3. (a) Let $z=x+i y$, find the real and imaginary parts of the following complex functions
(i) $f(z)=z^{2}$
(ii) $f(z)=\frac{1}{z}$
(b) Hence, show that 3(a) (i) and (ii) satisfy the Cauchy-Riemann equations
4. (a) Evaluate each of the following using theorems on limits
(i) $\lim _{z \rightarrow 1+i}\left(z^{2}-5 z+10\right)$
(3 marks)
(ii) $\lim _{z \rightarrow-2 i} \frac{(2 z+3)(z-1)}{z^{2}-2 z+4}$
(3 marks)
(b) Differentiate the following complex functions from the first principles
(i) $f(z)=z^{2}+z$
(3 marks)
(ii) $f(z)=\frac{1}{z}$
5. (a) Let $e^{i z}=\cos z+i \sin z$, prove that (i) $\cos z=\frac{e^{i z}+e^{-i z}}{2}$

$$
\begin{equation*}
\text { (ii) } \sin z=\frac{e^{i z}+e^{-i z}}{2} \tag{4marks}
\end{equation*}
$$

(b) Hence, show that $\sin ^{2} z+\cos ^{2} z=1$
6. (a) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path (i) $y=x$ (ii) $y=x^{2}$.
(8 marks)
(b) Evaluate $\int_{0}^{2+i} \bar{z} d z$ along the real axis from $z=0$ to $z=2$ and then along the line parallel to $y-\operatorname{axis} z=2$ to $z=2+i$ (4 marks)

