

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS October Examination 2019

Course Code:	MTH 304
Course Title:	Complex Analysis I
Credit Unit:	3
Time allowed:	3 Hours
Instruction:	Answer Question Number One and Any Other Four Questions

- 1. (a) Define a complex number *z* . (3 marks)
 - (b) Suppose $w = z^2$, where w = u(x, y) + iv(x, y). Find u(x, y) and v(x, y). (5 marks) (c) Express (4-7i)(-2+3i) in the form x+iy. (4 marks) (d) State the Cauchy integral formula. (3 marks) (e) Use the Cauchy Riemann equations to show that the function $f(z) = 2x^3 + 2x + i(3x^2 + 2x)$ is analytic. (7 marks)
- 2. (a) Simplify $\frac{5+2i}{(1+i)}$ (6 marks)
 - (b) If $w = z\overline{z}$. Find u(x, y) and v(x, y). (6 marks)
- 3. (a) Define the limit of a function f at the point z = z₀. (4 marks)
 (b) Suppose f(z) is a complex function. Find the derivative of f(z) = z² at z = z₀. (8marks)

4. (a) Define each of the following:

(i) a differentiable function $f(z)$ at a point z_0 .	(2 marks)
(ii) an analytic function $f(z)$ at a point z_0 .	(2 marks)
(iii) an entire function $f(z)$.	(2 marks)

- (b) Find the Laurent Series of $f(z) = \frac{1}{z(z-1)}$ valid at 0 < |z| < 1. (6 marks)
- 5. (a) State the Cauchy integral formula. (3 marks) (b) Evaluate $\int_{c} \frac{\cos z}{z^2 - 6z + 5} dz$ about |z| = 4. (9 marks)
- 6. (a) Define a convergent complex sequence. (3 marks) (b) Suppose the function f given by f(z) = u(x, y) + iv(x, y) has a derivative at $z = z_0 = (x_0, y_0)$. Find $f'(z_0)$. (9 marks)