

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_2 Examinations

Course Code:	MTH311
Course Title:	CALCULUS OF SEVERAL VARIABLES
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One (1) and Any Other 3 Questions

1. a. If
$$f(x, y) = \frac{xy^2}{x^2 + y^2}$$
 does $\lim_{x \to 0, y \to 0} f(x, y)$ exist? (5
marks)

- b. Find the derivative of $z = x^2 + 2xy + y^2$ (8 marks)
- c. Define the following functions: (i) constant function. (ii) identity function (iii) modulus function (iv) square root function. (v) trigonometric function. (12 marks)

2. a. If
$$f(x, y) = \frac{xy}{(x^2 - y^2)}$$
, does $\lim_{(x,y) \to (0,0)} f(x, y)$ exist (5
marks)
b. When is $f_{xy} = f_{yx}$? (5 marks)
c. Using implicit differentiation, fFind

$$\frac{d(x^3 + y^3 = 6xy)}{dx}$$
(5 marks)
3. a. Find the first order partial derivatives for
 $w = x^2y - 10y^2z^3 + 43x - 7\tan(4y)$ (5 marks)
b. Define Curl. (5 marks)
c. Define a polynomial function of two variables. (5 marks)

4. a. Where is the function continuous?

$$F(x) = \frac{x^2 + y^2}{x^2 + y^2}$$
 (7.5 marks)

b. Define Jacobian matrix (7.5 marks)

5.	a.	Define Taylors series	(7.5 marks)
	b.	Find $f_{xxyzz} = z^3 y^2 \ln(x)$	(7.5 marks)
6.	a. I	Differentiate $x^2 - 2xy + y^3 = c$	(7.5 marks)
	b.	Prove that $\frac{d(\tan^{-1}x)}{dx} = \frac{1}{1+x^2}$	(7.5 marks)

b. Prove that $\frac{d(\tan^{-1} x)}{dx} = \frac{1}{1+x^2}$