NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja
FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS
2021_2 Examinationsss

Course Code: MTH341
Course Title: Real Analysis
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Instruction: Answer Question One (1) and Any Other 4 Questions

1a) When is a function f said to be an increasing function in an interval? (4 marks)
b)Verify Rolle's theorem for the function f defined by $f(x)=x^{3}-6 x^{2}+11 x-6$ for all $x \in[1,3]$.(6 marks)
c) Show that if f is differentiable in $] a, b\left[\right.$ and $f^{\prime}(x) \neq 0$, for all $\left.x \in\right] a, b\left[\right.$, then $f^{\prime}(x)$ retains the same sign, positive or negative, for all $x \in] a, b[$.(6 marks)
d) Find the greatest and the least values of the function f defined by $f(x)=3 x^{4}+2 x^{3}-6 x^{2}+6 x+1$ in the interval [0,2$]$.(6 marks)

2a) If $f(x)=x^{2}$, defined on the interval]a,b[Show that $f^{\prime}(c)$ exists if and only if $L f^{\prime}(c), \mathrm{Rf}^{\prime}(c)$ exists and $\mathrm{Lf}^{\prime}(\mathrm{c})=\mathrm{Rf}^{\prime}(\mathrm{c})$. (6 marks)
b) Let a function $\mathrm{f}:[0,5] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{c}
2 x+1, \text { when } 0 \leq 3 \\
x^{2}-2 \text {, when } 3 \leq x \leq 5
\end{array}\right.
$$

Is the function f derivable at $\mathrm{x}=\mathbf{3}$?(6 marks)

3a) State without prove the Lagranges Mean Value Theorem. (3 marks)
b) Verify the hypothesis and conclusion of Lagrange's mean value theorem for the functions:
(i). $f(x)=\frac{1}{x}$ for all $x \in[1,4]$ (4.5 marks)
(ii). $f(x)=\log x$ for all $x \in\left[1,1+\frac{1}{e}\right]$ all $x \in[2,4]$. (4.5 marks)

4a) State without prove the Taylor's Theorem with Schlomilch and Roche form of remainder. (4 marks)
b) Deduce the two special form of remainders from 4(a). (9 marks)

5a) Determine the values of a and b for which $\lim _{x \rightarrow 0} \frac{[x(a-\operatorname{Cos} x)+b \operatorname{Sin} x]}{x^{s}}$ exists and is equal to $\frac{1}{6}$. (6 marks)
b) Evaluate $\lim _{x \rightarrow 0^{+}} \frac{\log \tan 2 x}{\log \tan x}$ (6 marks)

6a) State without prove the Maclaurin's Theorem with Lagranges form of remainder ($\mathbf{4} \mathbf{~ m a r k s}$)
b) Show that using Maclaurin's theorem, $\operatorname{Cos} x \geq 1-\frac{x^{2}}{2}$, for all $x \in \mathbb{R}(\mathbf{8}$ marks)

