NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja
FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS
2022_2 Examinations

Course Code: MTH341

Course Title: Real Analysis
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Instruction: Answer Question One (1) and Any Other 3 Questions

1a. If $f(x)=x^{2}$, defined on the interval $[a, b]$ Show that $f^{\prime}(c)$ exists if and only if $\mathrm{Lf}^{\prime}(c)$, $\mathrm{Rf}^{\prime}(\mathrm{c})$ exists and $\mathrm{Lf}^{\prime}(\mathrm{c})=\mathrm{Rf}^{\prime}(\mathrm{c})$. (6 marks)
b. State without prove the Taylor's Theorem with Schlomilch and Roche form of remainder. (5 marks)
c. Show that using Maclaurin's theorem, $\operatorname{Cos} x \geq 1-\frac{x^{2}}{2}$, for all $x \in \mathbb{R}(\mathbf{8}$ marks)
d. When is a function f said to be an increasing function in an interval? (6 marks)

2a. State without prove the Lagranges Mean Value Theorem. (7 marks)
b. Determine the values of a and b for which $\lim _{\mathrm{x} \rightarrow 0} \frac{[\mathrm{x}(\mathrm{a}-\operatorname{Cos} \mathrm{x})+\mathrm{bSin} \mathrm{x}]}{\mathrm{x}^{3}}$ exists and is equal to $\frac{1}{6}$.
(8 marks)
3a. State without prove the Maclaurin's Theorem with Lagranges form of remainder
(5 marks)
b. Evaluate $\lim _{x \rightarrow 0^{+}} \frac{\log \tan 2 x}{\log \tan x}(10$ marks $)$

4a. Deduce the two special form of remainders of Taylor's Theorem with Schlomilch and Roche form of remainder. (9 marks)
b. Find the $\lim _{x \rightarrow 4}\left\{\frac{1}{\log (x-3)}-\frac{1}{x-4}\right\}$. (6 marks)

5a. Verify Rolle's theorem for the function f defined by $f(x)=x^{3}-6 x^{2}+11 x-6$ for all $x \in[1,3]$. 8 marks)
b. \quad Show that if f is differentiable in $] a, b\left[\right.$ and $f^{\prime}(x) \neq 0$, for all $\left.x \in\right] a, b[$, then $f^{\prime}(x)$ retains the same sign, positive or negative, for all $x \in[a, b]$.(7 marks)

6a. Let a function $\mathrm{f}:[0,5] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{c}
2 x+1, \text { when } 0 \leq 3 \\
x^{2}-2, \text { when } 3 \leq x \leq 5
\end{array}\right.
$$

Is the function f derivable at $\mathrm{x}=3$?(5 marks)
b. Verify the hypothesis and conclusion of Lagrange's mean value theorem for the functions:
(i). $f(x)=\frac{1}{x}$ for all $x \in[1,4]$ (6 marks)
(ii). $f(x)=\log \mathrm{x}$ for all $\mathrm{x} \in\left[1,1+\frac{1}{\mathrm{e}}\right]$ all $\mathrm{x} \in[2,4]$. (4 marks)

