NATIONAL OPEN UNIVERSITY OF NIGERIA
Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.
FACULTY OF SCIENCES
April Examination 2019

Course Code:
 Course Title:
 Credit Unit:
 Time Allowed:
 Total:
 Instruction:

MTH341
Real Analysis II
3

3 HOURS
70 Marks
ATTEMPT QUESTION NUMBER ONE AND ANY OTHER FOUR (4) QUESTIONS

1 (a) State L-Hospital's rule
(2marks)
(b) Suppose that f and g are two functions differentiable at $a \in R$. Prove the Product Rule for differentiation, namely that $(f g)^{\prime}(a)=f(a) g^{\prime}(a)+(f)^{\prime}(a) g(a)$ using the Rules for Limits
(6marks)
(c) Find the value of $\quad \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
(6marks)
(d) if $f(x)=e^{x}+x \cos (x)$ and $g(x)=\sin (x)$ then find the value of $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$.

2 (a) (i) Define a derivative of a function in an interval.
(3marks)
(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x^{2} \cos \left(\frac{1}{x}\right)$ if $x \neq 0$ and $f(0)=0$. Find the derivative of

$$
f \text { at } x=0 \text { if it exists. }
$$

(4marks)
(b) Let $f: R \rightarrow R$ be defined as $f(x)=\left\{\begin{array}{lll}x^{4} \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$
(5marks)

Show that $f^{\prime}(0)$ exist. And hence find it value.

3 (a) State and proof Rolle's theorem
(b) (i) if $f(x)=x^{2}-3 x+2$ and $g(x)=x^{3}-x^{2}+x-1$ then find the value of $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}$.
(ii) Show that $\sqrt{3}$ is irrational

4 (a) Does there exist a differentiable function $f: \mathfrak{R} \rightarrow \mathfrak{R}$ such that $f^{\prime}(0)=0$ but $f^{\prime}(x) \geq 1$ for $x \neq 0$?
(5marks)
(b) Write out the Taylor polynomial $P_{2}(x)$ of order two at $x=0$ for the function g and give an expression for the remainder $R_{2}(x)$ in Taylor's formula $\mathrm{g}(\mathrm{x})=\sqrt{1+x}=P_{2}(x)+R_{2}(x)-1<x<\infty$.

5 (a) (i) Let $\left\{p_{n}\right\}$ be a sequence of real numbers. Give the definition of the convergence of this sequence (6marks)
(ii) What are intermediate forms?
(b) Find (i) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+3 x y^{2}-x y^{2}}{x^{2}+x y}$
(ii) $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{7} x^{98}-x^{97} y^{8}+x^{105}}{x y^{7}+x^{8}}$
(6marks)

6 (a) Verify the Cauchy's mean value theorem for the functions $f(x)=\sin x$ and $g(x)=\cos x$ in the interval $\left[-\frac{\Pi}{2}, 0\right]$.
(6marks)
(b) Let the functions f and g be defined by $f(x)=e^{x}$ and $g(x)=e^{-x}$ for all $x \in[a, b]$. Show that ' c ' obtained from the Cauchy's mean value theorem is the arithmetic mean of a and b. (6marks)

