

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES November Examination 2018

Course Code: Course Title:	MTH341 Real Analysis II
Credit Unit:	3
Time Allowed:	3 HOURS
Total:	70 Marks
Instruction:	ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS

1 (a) Suppose $f_n : A \to \Re$ is uniformly continuous on A for every $n \in \aleph$ and $f_n \to f$ uniformly convergent on A.

(6marks)

(b) Does the result in (a) remain true if $f_n \rightarrow f$ pointwise instead of uniformly?	(3marks)
(c) If $f(x) = x $, show that f has no derivative at $x = 0$.	(6marks)

(d) Find $x_0 \in (0, \frac{1}{2})$ when the mean value theorem is applied to f(x) = x(x-1)(x-2). (7marks)

2 (a) (i) Define a derivative of a function in an interval. (3marks)

(ii) Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^2 \cos(\frac{1}{x})$ if $x \neq 0$ and f(0) = 0. Find the derivative of

f at x = 0 if it exists.(4marks)

(b) Let
$$f: R \to R$$
 be defined as $f(x) = \begin{cases} x^4 \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$ (5marks)

Show that f'(0) exist. And hence find it value.

Prove that f is uniformly continuous on A.

- 3 (a) Verify that the result of Rolle's theorem is not true for $f(x) = 2x^{-2}$ on [-1,1]. (6marks)
 - (b) Find values of $x_0 \in [a,b]$ in the mean value theorem when $f(x) = x^k$, k = 1,2,3. (6marks)

4 (a) Does there exist a differentiable function $f: \mathfrak{R} \to \mathfrak{R}$ such that f'(0) = 0 but $f'(x) \ge 1$ for $x \ne 0$?

(b) Write out the Taylor polynomial $P_2(x)$ of order two at x = 0 for the function g and give an expression for the remainder $R_2(x)$ in Taylor's formula $g(x) = \sqrt{1+x} = P_2(x) + R_2(x) - 1 < x < \infty$. (7marks)

5 (a) Show that the
$$\lim_{x \to 0} \left[\frac{1 + \frac{x}{2} - \sqrt{1 + x}}{x^2} \right]$$
 exists and find its value (6marks)

(b) Find the least and greatest value of the function f defined by

$$f(x) = x^4 - 4x^3 - 2x^2 + 12x + 1$$
 in the interval [-2,5]. (6marks)

6 (a) Verify the Cauchy's mean value theorem for the functions $f(x) = \sin x$ and $g(x) = \cos x$ in the interval $\left[-\frac{\Pi}{2}, 0\right]$. (6marks)

(b) Let the functions f and g be defined by $f(x) = e^x$ and $g(x) = e^{-x}$ for all $x \in [a,b]$. Show that 'c' obtained from the Cauchy's mean value theorem is the arithmetic mean of a and b. (6marks)