NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES
November Examination 2018

Course Code:
Course Title:
Credit Unit:
Time Allowed:
Total:
Instruction:

MTH341
Real Analysis II

3
3 HOURS
70 Marks
ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS

1 (a) Suppose $f_{n}: A \rightarrow \mathfrak{R}$ is uniformly continuous on A for every $n \in \aleph$ and $f_{n} \rightarrow f$ uniformly convergent on A.
Prove that f is uniformly continuous on A.
(b) Does the result in (a) remain true if $f_{n} \rightarrow f$ pointwise instead of uniformly?
(c) If $f(x)=|x|$, show that f has no derivative at $x=0$.
(d) Find $x_{0} \in\left(0, \frac{1}{2}\right)$ when the mean value theorem is applied to $f(x)=x(x-1)(x-2)$.

2 (a) (i) Define a derivative of a function in an interval.
(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x^{2} \cos \left(\frac{1}{x}\right)$ if $x \neq 0$ and $f(0)=0$. Find the derivative of

$$
f \text { at } x=0 \text { if it exists. }
$$

(b) Let $f: R \rightarrow R$ be defined as $f(x)=\left\{\begin{array}{lll}x^{4} \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$

Show that $f^{\prime}(0)$ exist. And hence find it value.

3 (a) Verify that the result of Rolle's theorem is not true for $f(x)=2 x^{-2}$ on $[-1,1]$.
(b) Find values of $x_{0} \in[a, b]$ in the mean value theorem when $f(x)=x^{k}, k=1,2,3$.

4 (a) Does there exist a differentiable function $f: \mathfrak{R} \rightarrow \mathfrak{R}$ such that $f^{\prime}(0)=0$ but $f^{\prime}(x) \geq 1$ for $x \neq 0$?
(b) Write out the Taylor polynomial $P_{2}(x)$ of order two at $x=0$ for the function g and give an expression for the remainder $R_{2}(x)$ in Taylor's formula $\mathrm{g}(\mathrm{x})=\sqrt{1+x}=P_{2}(x)+R_{2}(x)-1<x<\infty$.

5 (a) Show that the $\lim _{x \rightarrow 0}\left[\frac{1+\frac{x}{2}-\sqrt{1+x}}{x^{2}}\right]$ exists and find its value (6marks)
(b) Find the least and greatest value of the function f defined by

$$
f(x)=x^{4}-4 x^{3}-2 x^{2}+12 x+1 \text { in the interval }[-2,5] .
$$

6 (a) Verify the Cauchy's mean value theorem for the functions $f(x)=\sin x$ and $g(x)=\cos x$ in the interval $\left[-\frac{\Pi}{2}, 0\right]$.
(b) Let the functions f and g be defined by $f(x)=e^{x}$ and $g(x)=e^{-x}$ for all $x \in[a, b]$. Show that ' c ' obtained from the Cauchy's mean value theorem is the arithmetic mean of a and b. (6marks)

