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1 (a)  Suppose Afn : is uniformly continuous on A  for every n and ffn  uniformly convergent on A .    

          Prove that f  is uniformly continuous on A .      (6marks) 

    (b) Does the result in (a) remain true if ffn  pointwise instead of uniformly?  (3marks) 

    (c )  If |,|)( xxf  show that f has no derivative at .0x      (6marks) 

    (d) Find ),0(
2
1

0 x when the mean value theorem is applied to ).2)(1()(  xxxxf  (7marks)  

 

2  (a) (i) Define a derivative of a function in an interval.      (3marks) 

          (ii) Let      be defined as )
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(5marks) 

                               Show  that )0(f   exist. And hence find it value. 

 

3 (a)  Verify that the result of Rolle’s theorem is not true for 22)(  xxf  on ].1,1[   (6marks) 

   (b) Find values of ],[0 bax   in the mean value theorem when .3,2,1,)(  kxxf k

 (6marks) 

 

 



 4  (a)  Does there exist a differentiable function :f such that 0)0(' f but 1)(' xf for 0x ? 

            (5marks) 

     (b)  Write out the Taylor polynomial )(2 xP of order two at 0x for the function g  and give an expression  

             for the remainder )(2 xR  in Taylor’s formula g(x) = .1)()(1 22  xxRxPx  (7marks) 
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exists and find its value          (6marks) 

    (b)      Find the least and greatest value of the function f defined by    

                                                       11224)( 234  xxxxxf in the interval  ].5,2[   (6marks) 

 

 6 (a)   Verify the Cauchy’s mean value theorem for the functions xxf sin)(   and xxg cos)(   in   

            the interval  ]0,[
2

 .         (6marks) 

(b) Let the functions  f and  g be defined by  xexf )( and  xexg )( for all  ],[ bax . Show that  ''c   

           obtained from the Cauchy’s mean value theorem is the arithmetic mean of a and b . (6marks) 

 

 

 

   

 


