

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_1 EXAMINATIONS ...

COURSE CODE: PHY312

COURSE TITLE: MATHEMATICAL METHODS FOR PHYSICS II

CREDIT UNIT: 3

TIME ALLOWED: $(2\frac{1}{2} HRS)$

INSTRUCTION: Answer question 1 and any other four questions

QUESTION 1

A (i). Show that the set of values 1, Cos x, Cos2x are orthogonal at the interval $-\pi \le x \le \pi$. (State any necessary assumption you have used). [7marks]

B. Define the following

i. Complete solution of a PDE
ii. Particular solution of a PDE
iii. General solution of a PDE
[1mark]
[1mark]

- C.(i) While solving a partial differential equation using a variable separable method, what general assumption is made regarding the function which depend on two variables (example u(x,t))? [1marks]
- (ii). Find the Laplace transform of $F(t) = e^{at}$. Where $t \ge 0$ and "a" is a constant. [5marks]

D. If u = x + y + z; $v = x^3 + y^3 + z^3$ and w = xyz; find

$$J = \frac{\partial(u, v, w)}{\partial(x, y, z)}$$
 [6marks]

QUESTION 2

A(i). Verify $u(x,t) = e^{-kt} \sin x$ satisfies the heat equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t^2}$$
 [5marks]

(ii). When can we say a function is periodic? [3marks]

B. Solve the differential equation $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = u$ using the method of separation of variables. (Assuming that, $u(0, y) = e^{\frac{2}{y}}$) [4marks]

QUESTION 3

A. Solve the equation $\frac{\partial^2 u}{\partial x^2} = 12x^2(t+1)$ given that at x=0, $u=\cos 2t$ and $\frac{\partial u}{\partial x} = \sin t$

[7marks]

B. Obtain PDE from w = f(sinx + Cosy)

[5marks]

QUESTION 4

A(i). Show that the velocity $u = \frac{ay}{x^2 + y^2}$; $v = \frac{ax}{x^2 + y^2}$; w = 0 associated with the fluid motion is the flow of an incompressible fluid. [7marks]

(ii). State the property of the Kronecker delta function (δ_{mn})

[2marks]

B. Given that $\Phi(r,\theta) = -E_0 r Cos\theta [1 + \frac{a^3}{r^3}]$, where Φ is electrostatic potential that satisfied the Laplace equation $\nabla^2 \theta = 0$. Write the associated electric field components for E_r , E_0 and E_{ϕ} [3marks]

QUESTION 5

- A. Solve the equation using Laplace transform $\frac{\partial u}{\partial t} = \frac{2\partial^2 u}{\partial x^2}$; where u(0,t)=u(3,t)=0, $u(x,0)=10\sin 2\pi x 6\sin 4\pi x$. [7marks]
- B. What is the Laplace transform of $f(t) = t^2 Cosat$

[5marks]

QUESTION 6

A. Find the period of tan x

[6marks]

B. Given the function $\emptyset = x^2 + yz$ at the point (1, 2, -1), find its rate of change with distance in the direction $\vec{a} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. [6marks]