DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_1 EXAMINATIONS ...

COURSE CODE:
COURSE TITLE: CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY312
MATHEMATICAL METHODS FOR PHYSICS II
3
($\mathbf{2 1}^{1} 2 \mathrm{HRS}$)
Answer question 1 and any other four questions

QUESTION 1

A (i). Show that the set of values $1, \operatorname{Cos} x, \operatorname{Cos} 2 x$ are orthogonal at the interval $-\pi \leq x \leq \pi$. (State any necessary assumption you have used).
[7marks]
B. Define the following
i. Complete solution of a PDE [1 mark]
ii. Particular solution of a PDE
iii. General solution of a PDE
[1mark]
C.(i) While solving a partial differential equation using a variable separable method, what general assumption is made regarding the function which depend on two variables (example $\mathrm{u}(\mathrm{x}, \mathrm{t})$)?
(ii). Find the Laplace transform of $\mathrm{F}(\mathrm{t})=\mathrm{e}^{\mathrm{at}}$. Where $\mathrm{t} \geq 0$ and "a" is a constant.
D. If $u=x+y+z ; v=x^{3}+y^{3}+z^{3}$ and $w=x y z$; find
$J=\frac{\partial(u, v, w)}{\partial(x, y, z)}$
[6marks]

QUESTION 2

$\mathrm{A}(\mathrm{i})$. Verify $\mathrm{u}(\mathrm{x}, \mathrm{t})=e^{-k t} \sin x$ satisfies the heat equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t^{2}}
$$

(ii). When can we say a function is periodic?
B. Solve the differential equation $x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}=u$ using the method of separation of variables. (Assuming that, $u(0, y)=e^{\frac{2}{y}}$)
[4marks]

QUESTION 3

A. Solve the equation $\frac{\partial^{2} u}{\partial x^{2}}=12 x^{2}(\mathrm{t}+1)$ given that at $x=0, u=\cos 2 \mathrm{t}$ and $\frac{\partial u}{\partial x}=\operatorname{sint}$ [7marks]
B. Obtain PDE from $w=f(\sin x+\operatorname{Cos} y)$
[5marks]

QUESTION 4

A(i). Show that the velocity $u=\frac{a y}{x^{2}+y^{2}} ; v=\frac{a x}{x^{2}+y^{2}} ; w=0$ associated with the fluid motion is the flow of an incompressible fluid.
(ii). State the property of the Kronecker delta function $\left(\delta_{\mathrm{mn}}\right)$ [2marks]
B. Given that $\Phi(r, \theta)=-E_{0} r \operatorname{Cos} \theta\left[1+\frac{a^{3}}{r^{3}}\right]$, where Φ is electrostatic potential that satisfied the Laplace equation $\nabla^{2} \theta=0$. Write the associated electric field components for $\mathrm{E}_{\mathrm{r}}, \mathrm{E}_{0}$ and E_{φ}

QUESTION 5

A. Solve the equation using Laplace transform $\frac{\partial u}{\partial t}=\frac{2 \partial^{2} u}{\partial x^{2}}$; where $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(3, \mathrm{t})=0$, $u(x, 0)=10 \operatorname{Sin} 2 \pi x-6 \operatorname{Sin} 4 \pi x$.
[7marks]
B. What is the Laplace transform of $f(t)=t^{2} \operatorname{Cosat}$
[5marks]

QUESTION 6

A. Find the period of $\tan x$
[6marks]
B. Given the function $\emptyset=x^{2}+y z$ at the point $(1,2,-1)$, find its rate of change with distance in the direction $\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$.

