DEPARTMENT OF PURE AND APPLIED SCIENCE

OCT/NOV 2019 EXAMINATIONS

COURSE CODE:

COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY 312

MATHEMATICAL METHODS FOR PHYSICS II 3
($2^{1 / 2}$ HRS)
Answer question 1 and any other four questions

QUESTION 1

a. Differentiate between ordinary differential equation and partial differential equation
[4 marks]
b. Define the following terms as applied to differential equation:
(i) Order of a differential equation
(ii) Degree of a differential equation
(iii) Linearity
c. Hence classify the following ordinary differential equations in to their order and degree.
(i) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=0$
(ii) $\frac{d^{3} y}{d x^{3}}=\sqrt{1+(d y / d x)^{3}}$
[2 marks]
(iii) $L \frac{d^{2} y}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=E \sin w t$
$(i v)\left[1+\left(\frac{d y}{d}\right)^{2}\right]^{\frac{3}{2}}=\frac{d^{2} y}{d x^{2}}$
(v) $\frac{d^{2} y}{d x^{2}}+a x=0$
d. Solve the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-7 \frac{\partial^{2} u}{\partial x \partial y}+6 \frac{\partial^{2} u}{\partial y^{2}}=0
$$

[2 marks]

QUESTION 2

(a) Define any three of the following functions with example(s):
(i) Odd function
(ii) Even function
(iii) orthogonal function
(iv) Periodic function
(v) Fourier series.
b.

Solve the equation $\frac{\partial^{2} u}{\partial x^{2}}=12 x^{2}(t+1)$
given that at $x=0, u=\cos 2 t$ and $\frac{\partial u}{\partial t}=\sin t$

QUESTION 3

(a) Derive an expression for Poisson's equation from Gauss's law in linear material medium.
[6 marks]
(b) Hence obtain an expression for the Laplace's equation in Cartesian, cylindrical and spherical coordinates.
[6 marks]

QUESTION 4

a) Solve the partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-5 \frac{\partial^{2} u}{\partial x \partial y}+6 \frac{\partial^{2} u}{\partial y^{2}}=0 \quad[5 \text { marks }]
$$

b) Use the Laplace transform to solve the problem

$$
\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}} \quad[7 \text { marks }]
$$

With the boundary conditions $u(0, t)=u(3, t)=0, u(x, 0)=10 \sin 2 \pi x-6 \sin 4 \pi x$

QUESTION 5

(a) If the general periodic function $f(x)$ is defined in an interval $-\pi \leq x \leq \pi$, Write down the Fourier series of $f(x)$ in $[-\pi, \pi]$ defined in a trigonometric series.
(b) Using the Fourier series defined above, Obtain the Fourier coefficients a_{n}, b_{n} and a_{0}

QUESTION 6

(a)Show that the Orthogonality of a Legendre polynomial is given as

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0 \quad m \neq n
$$

[6 marks]
(b) Obtain the general solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$ [6 marks]

