NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE
2021_2 EXAMINATIONS
COURSE CODE:
COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

QUESTION 1

a. Solve the ordinary differential equation using the Runge-kutta fourth order method
$\frac{d y}{d x}=y+x ; y(0)=1 ;$ find y at $x=0.2$
(5marks)
b. Compute the value of integral

$$
\int e^{-x^{2}} d x
$$

with the use of Trapezoidal and Simpson rule
(4marks)
c. Write out the Newton forward and backward interpolation formula
d. Give two merits of Bisection and Newton-Raphson method
e. Use Gauss- elimination to compute the solution of the linear system

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3}=5 \\
& 3 x_{1}+2 x_{2}+x_{3}=8 \\
& x_{1}-2 x_{2}+3 x_{3}=0
\end{aligned}
$$

f. Using method of group averages, find the relationship between X and T

T	5	12	19	26	33
X	23	28	32	38	41

g. A student measured the length of a string of actual length 72.5 cm . Calculate the absolute error and the percentage error.

QUESTION 2

a. solve the system of Linear equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}-1 \\
& x_{1}+2 x_{2}+2 x_{3}=-4 \\
& 9 x_{1}-6 x_{2}+x_{3}=7
\end{aligned}
$$

Using the method:
i. Gaussian elimination
ii. Gauss-jordan elimination
iii. Lil decomposition

QUESTION 3

Solve the following system of linear equation using Jacobi iteration procedure

$$
\begin{aligned}
& 3 x_{1}+x_{2}-x_{3}=3 \\
& 2 x_{1}+4 x_{2}+x_{3}=7 \\
& x_{1}-x_{2}+4 x_{3}=4
\end{aligned}
$$

Consider the initial approximation $x_{1}{ }^{(0)}=0, x_{2}{ }^{(0)}=0, x_{3}{ }^{(0)}=0$. Apply Jacobi method till the last two consecutive iteration have difference less than 0.0005 .

QUESTION 4

Evaluate the integral $\int_{1}^{2.2} \frac{1}{1+2 x+x^{2}} d x$ by trapezoidal and Simpson rules by dividing the interval into 12 eqaul subinterval. Use six decimal places round-off arithmetic.
(15marks)

QUESTION 5

The current flowing in a particular R.C circuit is tabulated against the change in the time $\mathrm{t}-\mathrm{t}_{0}$, the current is 1.2 A . Using method of least-square and group averages. Find the slope and the intercept of the linear function relating the current I to the time t, hence determine the timeconstant of the circuit.

