NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2021_1 EXAMINATIONS ...

COURSE CODE:	PHY 314
COURSE TITLE:	NUMERICAL COMPUTATIONS
CREDIT UNIT:	2
TIME ALLOWED:	(2 HRS)

INSTRUCTION:

Answer question 1 and any other three questions

QUESTION 1

- (a) Round-off the following number
 - i.12.0234831 4 s.f
 - ii. 295.10542 5s.f
 - iii. 0.0045829 3s.f

(b) A student obtained the following data in the laboratory by making use of the method of the least squares, Find the relationship between x and t

Х	5	12	19	26	33
Т	23	28	32	38	41

(3 marks)

(c) Solve the system of equation using Gaussian elimination method

$2x_1 + 3x_2 = 13$	
$x_1 - x_2 = -1$	(4 marks)

(d) Give t	wo demerits of bis	ection and Newton-Raphs	on (4marks)
------------	--------------------	-------------------------	-------------

(e) Show that $\nabla^3 y_2 = \nabla^3 y_5$ (3marks)

(f) Write out the Simpson's three-eight and Simpson's one-third rule (3marks)

(g) using the Euler method, calculation y (0.8), given the differential equation

$$\frac{dy}{dx} = x + y; y(0) = 0; with h = 0.2$$
 (5 marks)

(3marks)

QUESTION 2

(a) Mention and explain two different types of errors.		
(b) An approximation to the value of π is given by $\frac{22}{7}$, while its time in 8 decima	al digits is	
3.1415926. Calculate the		
i. the absolute error	(3marks)	
ii. Relative error	(4marks)	
iii. Percentage error in the approximation	(4marks)	

QUESTION 3

Solve the following system of linear equations corrects up to three decimal places using the Gauss-seidal iterative procedure. Take Zero vector as the initial solution error

$$3x_1 + x_2 - 2x_3 = 3$$

$$2x_1 + 4x_2 + x_3 = 7$$

$$x_1 - x_2 + 4x_3 = 4$$

Show that at the fifth iteration; the solution is correct to 3 decimal places. The exact solution for the system is $x_1 = 1$, $x_2 = 1$, $x_3 = 1$ (15marks)

QUESTION 4

Find the cubic polynomial that fits the table below

Х	1	2	3	4	
Y	3	9	27	63	
				(15marks)

QUESTION 5

(a) Use Picard method to solve the initial value problem

$$\frac{dy}{dx} = -2xy, y(0) = 1$$
 (7marks)

(b) Use Runger-kutta fourth order method with the step size h=0.1 for the initial value

problem
$$\frac{dy}{dx} = x + y^2$$
, $y(1) = 2$ Compute $y(1.1)$ (8marks)