NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE
2021_1 EXAMINATIONS

COURSE CODE:
COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY 314
NUMERICAL COMPUTATIONS
2
(2 HRS)
Answer question 1 and any other three questions

QUESTION 1

(a) Round-off the following number
i.12.0234831

4 s.f
ii. 295.10542 5s.f
iii. 0.0045829 3s.f
(b) A student obtained the following data in the laboratory by making use of the method of the least squares, Find the relationship between x and t

x	5	12	19	26	33
T	23	28	32	38	41

(c) Solve the system of equation using Gaussian elimination method

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=13 \\
& x_{1}-x_{2}=-1
\end{aligned}
$$

(d) Give two demerits of bisection and Newton-Raphson
(e) Show that $\nabla^{3} y_{2}=\nabla^{3} y_{5}$
(f) Write out the Simpson's three-eight and Simpson's one-third rule
(g) using the Euler method, calculation y (0.8), given the differential equation

$$
\frac{d y}{d x}=x+y ; y(0)=0 ; \text { with } h=0.2
$$

QUESTION 2

(a) Mention and explain two different types of errors.
(4marks)
(b) An approximation to the value of π is given by $\frac{22}{7}$, while its time in 8 decimal digits is
3.1415926. Calculate the
i. the absolute error
ii. Relative error
iii. Percentage error in the approximation

QUESTION 3

Solve the following system of linear equations corrects up to three decimal places using the
Gauss-seidal iterative procedure. Take Zero vector as the initial solution error

$$
\begin{aligned}
& 3 x_{1}+x_{2}-2 x_{3}=3 \\
& 2 x_{1}+4 x_{2}+x_{3}=7 \\
& x_{1}-x_{2}+4 x_{3}=4
\end{aligned}
$$

Show that at the fifth iteration; the solution is correct to 3decimal places. The exact solution for the system is $x_{1}=1, x_{2}=1, x_{3}=1$

QUESTION 4

Find the cubic polynomial that fits the table below

X	1	2	3	4
Y	3	9	27	63

QUESTION 5

(a) Use Picard method to solve the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=-2 x y, y(0)=1 \tag{7marks}
\end{equation*}
$$

(b) Use Runger-kutta fourth order method with the step size $\mathrm{h}=0.1$ for the initial value problem $\frac{d y}{d x}=x+y^{2}, y(1)=2 \quad$ Compute $y(1.1)$
(8marks)

