

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

2023_1 POP EXAMINATION:..

Course Code: MTH 302

Course Title: Elementary Differential Equations II

Credit Unit: 3

Time allowed: 3 Hours

Instruction: Answer Question One and Any Other Three our Questions

1(a) Define the following terms

(i)	Power series	(2 marks)
(ii)	Radius of convergence	(2 marks)
(iii)	Ordinary points	(2 marks)
(iv)	Singular points	(2 marks)

- (b) Solve the equation y'' + 4y = 0 near the ordinary point x = 0 (10 marks)
- (c) By using change of variable $x = e^z$ and x > 0, obtain solution of the equation

$$x^2y'' + \alpha xy' + \beta y = 0 \tag{7 marks}$$

2(a) Find the series solution of the equation

$$2xy'' + (1+x)y' - 2y = 0$$
 (8 marks)

- (b) Solve the equation y'' + (x 1)y' 4(x 1) = 0 about the ordinary point x = 1 (7 marks)
- 3(a) Define the following terms
 - (i) Even function
 - (ii) Odd function
 - (b) Classify of the following functions into even, odd or neither
 - (i) $x \sin nx$ (1 mark)
 - (ii) $x \sin x \cos 4x$ (1 mark)
 - (iii) $(2x+3)\sin 4x$ (1 mark)
 - (iv) $\sin^2 x \cos 3x$
 - (v) $x^3 e^x$ (1 mark)

(b) Determine the Fourier series representation of $f(x) = x^2$

in the interval – $\pi \leq x \leq \pi$.

(10 marks)

4(a). Determine the Fourier series of a function f(x) defined on the interval $-L \le X \le L$ (5 marks)

- (b). Obtain the Fourier series representation of function f(x) = x + 1 for $-1 \le x \le 1$ (10 marks)
- 5(a). Define the orthogonality conditions of the set of functions $f_0(x), f_1(x), f_2(x), \dots, f_n(x)$ with respect to a weight function w(x). (2 marks)
- (b). Determine the Eigen values and Eigen functions of the system.

$$u'' + \lambda u = 0, u(0) = 0, u(\pi) = 0$$

(6 marks)

(c). Prove that Eigen functions of the equation are orthogonal in $[0,\pi]$. (4 marks)

6(a). Determine for what values of x the series $\sum_{r=0}^{\infty} a_r (x-x_0)^r$

- (i) converges
- $(2 \frac{1}{2} \text{ marks})$

(ii) diverges

(2 ½ marks)

6(b). Solve the differential equation y'' + y = 0 near an ordinary point x = 0 (7 marks)