NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

October Examination 2019

Course Code: MTH 302
Course Title: Elementary Differential Equations II
Credit Unit: 3
Time allowed: 3 Hours
Instruction: Answer Question Number One and Any Other Four Questions
1(a). Given a second order ordinary differential equation $p(x) y^{\prime \prime}(x)+Q(x) y^{\prime}(x)+R(x) y(x)=0$, what do you understand by the regular singular point of the equation?
(b). Locate and classify all singular points of the equation

$$
\begin{equation*}
x^{3}(x-1) y^{\prime \prime}+(x-1) y^{\prime}+4 x y=0 \tag{4marks}
\end{equation*}
$$

(c). Consider the ordinary differential equation

$$
2 x y^{\prime \prime}+(1+x) y^{\prime}-2 y=0
$$

(i) Identify the regular singular point of the equation
(ii) Assume a series solution about its regular singular point and
find the indicial of the equation
(6 marks)
(iii) Determine the general solution of the equation

2(a). Identify the differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+\propto x y^{\prime}+\beta y=0 \tag{2marks}
\end{equation*}
$$

(b). Transform the equation into a differential equation with constant coefficients by making use of the transformation $x=e^{z}$ or $z=\log x, x>0$.
(c) Hence, determine the solution of the equation if the roots of the auxiliary equation obtained have
(i) real and distinct roots
(ii) equal real roots

3(a). Determine the Fourier series of a function $\mathrm{f}(\mathrm{x})$ defined on the interval $-L \leq X \leq L$
(b). Obtain the Fourier series representation of function $f(x)=x+1$ for $-1 \leq \mathrm{x} \leq 1$

4 (a). What are even and odd functions?

(2 marks)

(b). determine whether or not each of the following functions is even or odd or neither even nor odd
(i) $\cosh (x)$
(ii) $\sinh (x)$
(iii) $x^{2}+\sin x$
(iv) $1+x+3 x^{4}$
(1 mark)
(1 mark)
(1 mark)
(1 mark)
(c). Determine the Fourier series representation of $f(x)=x^{2}$ in the interval $-\pi \leq x \leq \pi$. (6 marks)

5(a). Define the orthogonality conditions of the set of functions $f_{0}(x), f_{1}(x), f_{2}(x), \ldots . f_{n}(x)$ with respect to a weight function $w(x)$.
(2 marks)
(b). Determine the Eigen values and Eigen functions of the system.

$$
u^{\prime \prime}+\lambda u=0, u(0)=0, \quad u(\pi)=0
$$

(6 marks)
(c). Prove that Eigen functions of the equation are orthogonal in $[0, \pi] . \quad$ ($\mathbf{4}$ marks)

6(a). Determine for what values of x the series $\sum_{r}^{\infty} a_{r}\left(x-x_{0}\right)^{r}$
(i) converges
($21 / 2$ marks)
(ii) diverges
($21 / 2$ marks)
$6(\mathrm{~b})$. Solve the differential equation $y^{\prime \prime}+y=0$ near an ordinary point $x=0$

