

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS September Examination, 2020_1

Course Code: MTH 305 Course Title: Complex Analysis II Credit Unit: 3 Time Allowed: 3 Hours Instruction: Answer Question Number One and Any Other Four Questions

1a.	Define Complex variable and transformation	(4marks)
b.	Discuss 4 elementary functions of Complex Variables.	(8marks)
c.	What do you understand by limit and continuity of functions of co	mplex variables? (6marks)
d.	What are the theorems on continuity? State them.	(4marks)
2a	Explain the following Classification of singularities:	
	 i. Poles ii. Removable singularities iii. Essential singularities iv. Branch Points v. Singularities of Infinity. 	(10marks)
b.	Differentiate between Simply and Multiply Connected Regions.	(2marks)
3a.	Differentiate between an Infinite series and sequence.	(2marks)
b.	Expand $f(z) = \cos z$ in Taylor' series about $z = \pi/4$ and determine convergence.	its region of (10marks)
4a.	State the Green's theorem in the Plane.	(2marks)
b.	Using a circular contour of unit radius , prove that $\int_0^{2\pi} \frac{d\theta}{5+\sin\theta} = \frac{\pi}{2}$	(10marks)

5a. State the Harmonic Function (2marks)

b. Expand $f(z) = \frac{1}{z-3}$ as a Laurent series valid for

|z| < 3i. |z| > 3ii. (10marks)

Prove that f(z) is analytic for |z| < R with $f(z) = \sum_{n=0}^{\infty} a_n Z_n$ then, if M_r 6a.

is the supremum of |f(z)| on the circle $\ |z|=r<\ R,$ then $|a_n|< M_r\!/\ r^n.$ (3marks)

b. Find the Taylor's series expansion of the function of the complex variable $f(z) = \frac{1}{(z-1)(z-3)}$ (9 marks)

about the point z = 4 for order 3.