NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja
FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS
2021_1 Examinations

Course Code: MTH 305

Course Title: Complex Analysis II
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
Instruction: Answer Question One (1) and Any Other 4 Questions

Q1 (a) Define each of the following:
(i) Limit of a complex function $f(z)$. (4 marks)
(ii) Essential singularity.
(b) Establish that $\sin ^{2} z+\cos ^{2} z=1$
(c) Determine the poles and the residues at the poles of $f(z)=\frac{3 z+1}{\left(z^{2}-z-2\right)}$ ($6 \mathbf{m a r k s}$)
(d) State the Residue theorem.
(4 marks)
Q2 (a) State the Cauchy integral formula
(b) If c is a curve $y=x^{3}-3 x^{2}+4 x-1$ joining the points $(1,1)$ and $(2,3)$, show that $\int_{c}\left(12 z^{2}-4 i z\right) d z$ is independent of the path joining $(1,1)$ and $(2,3)$.

Q3 (a) Differentiate between a single valued and a multiple valued complex function $w(z)$.
(b) Prove that $\cosh ^{2} z-\sinh ^{2} z=1$

Q4 (a) Define each of the following:
(i) A continuous complex function f at a point.
(ii) bounded complex function.
(b) Find the Laurent series expansion of $f(z)=\frac{1}{z-3}$ valid for $|z|<3$.

Q5 (a) Define a harmonic function.
(b) The derivative of the function $f(z)=z^{2}$ exists everywhere, Show that the Cauchy-Riemann equations are satisfied everywhere.

Q6 (a) Define an isolated singular point.
(b) Determine the poles and the residues at the poles of $f(z)=\left(\frac{z+1}{z-1}\right)^{2}$.
(c) State the Morera's theorem

