

## NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

## FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021\_1 Examinations ....

**Course Code: MTH 305** 

| Course Title: Complex Analysis II Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 4 Questions |                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Q1 (a) Define each of the following:                                                                                                                  |                              |
| <ul><li>(i) Limit of a complex function f(z).</li><li>(ii) Essential singularity.</li></ul>                                                           | (4 marks)<br>(2 marks)       |
| (b) Establish that $sin^2z + cos^2z = 1$                                                                                                              | (6 marks)                    |
| (c) Determine the poles and the residues at the poles of $f(z) = \frac{3z+1}{(z^2-z-1)}$ (d) State the Residue theorem.                               | (6 marks) (4 marks)          |
| Q2 (a) State the Cauchy integral formula                                                                                                              | (3 marks)                    |
| (b) If c is a curve $y = x^3 - 3x^2 + 4x - 1$ joining the points (1,1) and                                                                            | 1 (2,3),                     |
| show that $\int_c (12z^2 - 4iz)dz$ is independent of the path joining (1)                                                                             | 1,1) and (2,3).<br>(9 marks) |
| Q3 (a) Differentiate between a single valued and a multiple valued compl                                                                              | ex function $w(z)$ .         |
|                                                                                                                                                       | (3 marks)                    |
| (b) Prove that $cosh^2z - sinh^2z = 1$                                                                                                                | (9 marks)                    |

Q4 (a) Define each of the following:

- (i) A continuous complex function f at a point. (3 marks)
- (ii) bounded complex function. (2 marks)
- (b) Find the Laurent series expansion of  $f(z) = \frac{1}{z-3}$  valid for |z| < 3. (7 marks)
- Q5 (a) Define a harmonic function. (4 marks)
  - (b) The derivative of the function  $f(z) = z^2$  exists everywhere, Show that the Cauchy-Riemann equations are satisfied everywhere. (8 marks)
- Q6 (a) Define an isolated singular point. (3 marks)
  - (b) Determine the poles and the residues at the poles of  $f(z) = \left(\frac{z+1}{z-1}\right)^2$ . (7 marks)
  - (c) State the Morera's theorem (2 marks)