

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_1 EXAMINATION

Course Code: MTH 305 Course Title: Complex Analysis II Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 3 Questions

Q1 (a) Define each of the following:

(i)	Limit of a complex function $f(z)$.	(5 marks)
(ii)	Essential singularity.	(3 marks)
(b) E	Stablish that $sin^2z + cos^2z = 1$	(7 marks)

(c) Determine the poles and the residues at the poles of $f(z) = \frac{3z+1}{(z^2-z-2)}$ (6 marks)

(d) State the Residue theorem. (4 marks)

Q2 (a) State the Cauchy integral formula

(b) If c is a curve $y = x^3 - 3x^2 + 4x - 1$ joining the points (1,1) and (2,3), show that $\int_c (12z^2 - 4iz)dz$ is independent of the path joining (1,1) and (2,3). (10 marks)

(5 marks)

Q3 (a) Differentiate between a single valued and a multiple valued complex function w(z).

(5 marks) (b) Prove that $cosh^2z - sinh^2z = 1$ (10 marks) Q4 (a) Define each of the following:

(i)	A continuous complex function <i>f</i> at a point.	(3 marks)
(ii)	bounded complex function.	(4 marks)
(b) Fi	ind the Laurent series expansion of $f(z) = \frac{1}{z-3}$ valid for $ z < 3$.	(8 marks)
Q5 (a) D	efine a harmonic function.	(7 marks)
(b)The derivative of the function $f(z) = z^2$ exists everywhere, show that the Cauchy-		
Riemann	equations are satisfied everywhere.	(8 marks)
Q6 (a) D	efine an isolated singular point.	(5 marks)
(b) D	etermine the poles and the residues at the poles of $f(z) = \left(\frac{z+1}{z-1}\right)^2$.	(6 marks)
(c) St	ate the Moreira's theorem	(4 marks)