

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

2022 2 Examinations

Course	Code:	MTH305

Course Title: Complex Analysis II

Credit Unit: 3

Time Allowed: 3 Hours

Total: 70 Marks

Instruction: Answer Question One (1) and Any Other 3 Questions

Q1 (a) (i) Define a single-valued complex function w(z).

(3 marks)

- (ii) If $z \in C$ such that z = x + iy and w(x, y) = u(x, y) + iv(x, y) Suppose $f(z) = z^2$, find u(x, y) and v(x, y), (4 marks)
- (b) Define each of the following:
- (i) a continuous function f at a point z_0 .

(3 marks)

(ii) a branch point.

(3 marks)

(c) (i) Show that the function $u(x, y) = y^3 - 3x^2y$ is harmonic.

(4 marks)

- (ii) Determine the poles and the residues at the poles of $f(z) = \frac{2z+1}{(z+1)(z-2)}$. (5 marks)
- (d) State the Green's theorem in a plane.

(3 marks)

Q2 (a) Define a transformation.

(7 marks)

(b) Given that z is a complex number and w = f(z). Find $\frac{1}{z}$.

(8 marks)

Q3 (a) Define the limit of a complex function f(z).

(5 marks)

(b) Suppose $z \in C$. Show that $sin^2z + cos^2z = 1$.

(10 marks)

Q4 (a) Define each of the following:

(i) removable singularities

(3 marks)

- (ii) bounded complex function.
- (b) Prove that if $f(z) = \frac{\sin z}{z}$ then z = 0 is a removable singularity. (8 marks)

(4 marks)

- Q5 (a) State the residue theorem. (5 marks)
 - (b) Expand $f(z) = \frac{1}{z-3}$ in a Laurent series valid for |z| > 3. (10 marks)
- Q6 (a) Define an analytic function f(z). (5 marks)
 - (b) Establish that the real and imaginary part of the function $f(z) = z^2 + 5iz + 3 i$ satisfy the Cauchy Riemann equation and deduce the analyticity of the function. (10 marks)