NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja
FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS
2021_2 Examinations...

Course Code: MTH312
Course Title: Abstract Algebra
Credit Unit: 3
Time Allowed: $\mathbf{3}$ Hours
Total: 70 Marks
Instruction: Answer Question One (1) and Any Other 4 Questions

1a) Define the following terms: i) $\operatorname{Im} f$, f is a homomorphism. ii) $\operatorname{Ker} \mathbb{f}, f$ is a homomorphism. iii) Commutative ring. iv) an Alternating group. (8 marks)
b) Show that if $f: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ is a group homomorphism. Then f is injective if and only if $\operatorname{Ker} f=\left\{e_{1}\right\}$. Where e_{1} is the identity element of the group G_{1}. (7 marks)
c) Define a Sylow p-subgroup ii)State without prove the first Sylow's theorem.(7 marks)

2a) Define i). a ring homomorphism ii). An epimorphism(4 marks)
bi) Let R be a ring. Show that the identity map I_{R} is a ring homomorphism. What are $\operatorname{Ker} I_{R}$ and $\operatorname{Im} I_{R}$? Is I_{R} an epimorphism?
bii) Let $s \in \mathbb{N}$, show that the map $f: \mathbb{Z} \rightarrow \mathbb{Z}_{s}$ given by $f(m)=m$ for all $m \in \mathbb{Z}$ is a ring homomorphism. What are $\operatorname{Ker} \mathrm{f}$ and $\mathrm{Im} f$? Is f an epimorphism? (8 marks)

3a) Define the terms i).Principal ideal ii). Nilpotent iii). Nil radical of R.(6 marks)
b) Given a ring R and an ideal I. Show that R / I is a ring with respect to addition and multiplication defined by $(x+I)+(y+I)=(x+y)+I$ and $(x+I)(y+I)=(x y)+I$ for all $x, y \in R .(6$ marks $)$

4a) Show that Aut $\mathbb{Z} \cong \mathbb{Z}_{2}$ (6 marks)
b) Show that any cyclic group is isomorphic to $(\mathbb{Z},+)$ or $\left(\mathbb{Z}_{n},+\right)$. $\mathbf{6}$ marks)

5a) Define the terms
i) ideal of a ring. ii) proper ideal of a ring. iii) The ideal generated by $a_{1}, a_{2}, \cdots, a_{n}$, elements of a ring. (6 marks)
bi) Given that X is an infinite set and I is the class of all finite subsets of X . Show that I is an ideal of $\wp(\mathrm{X})$.
bii) For any ring R and $a_{1}, a_{2} \in R$. Show that $R a_{1}+\operatorname{Ra}_{2}=\left\{x_{1} a_{1}+x_{2} a_{2} \in R\right\}$ is an ideal of R. (6 marks)

6a). Explain the following terms i.) when a permutation is called r-cyclic. ii) A transposition. iii). When two cycles are said to be disjoint. iv) The signature of $f \in S_{n} .(6$ marks)
b) Express each of the following permutations as products of disjoint cycles.
i. $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 1 & 3\end{array}\right) \quad$ ii. $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2\end{array}\right)$
iii. $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 7 & 2 & 1 & 3 & 6 & 5\end{array}\right)$
(3 marks)
c) Given that $f, g \in S_{n}$, show that $\operatorname{sign}\left(f^{\circ} g\right)=(\operatorname{sign} f)(\operatorname{sign} g) \cdot(3$ marks $)$

