

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2021 2 Examinations...

Course Code: MTH312

Course Title: Abstract Algebra

Credit Unit: 3

Time Allowed: 3 Hours

Total: 70 Marks

Instruction: Answer Question One (1) and Any Other 4 Questions

1a) Define the following terms: i) Im f, f is a homomorphism. ii) Ker f, f is a homomorphism. iii) Commutative ring. iv) an Alternating group. (8 marks)

- b) Show that if $f: G_1 \to G_2$ is a group homomorphism. Then f is injective if and only if $Ker\ f = \{e_1\}$. Where e_1 is the identity element of the group G_1 .(7 marks)
- c) Define a Sylow p-subgroup ii) State without prove the first Sylow's theorem. (7 marks)
- 2a) Define i). a ring homomorphism ii). An epimorphism (4 marks)
- bi) Let R be a ring. Show that the identity map I_R is a ring homomorphism. What are Ker I_R and Im I_R ? Is I_R an epimorphism?
- bii) Let $s \in \mathbb{N}$, show that the map $f: \mathbb{Z} \to \mathbb{Z}_s$ given by f(m) = m for all $m \in \mathbb{Z}$ is a ring homomorphism. What are Ker f and Im f? Is f an epimorphism? (8 marks)
- 3a) Define the terms i). Principal ideal ii). Nilpotent iii). Nil radical of R. (6 marks)
- b) Given a ring R and an ideal I. Show that R/I is a ring with respect to addition and multiplication defined by (x + I) + (y + I) = (x + y) + I and (x + I)(y + I) = (xy) + I for all $x, y \in R$.(6 marks)

- 4a) Show that $Aut\mathbb{Z} \cong \mathbb{Z}_2$ (6 marks)
- b) Show that any cyclic group is isomorphic to $(\mathbb{Z}_n,+)$ or $(\mathbb{Z}_n,+)$. (6 marks)
- 5a) Define the terms
- i) ideal of a ring. ii) proper ideal of a ring. iii) The ideal generated by a_1, a_2, \dots, a_n , elements of a ring. (6 marks)
- bi) Given that X is an infinite set and I is the class of all finite subsets of X. Show that I is an ideal of $\mathcal{D}(X)$.
- bii) For any ring R and $a_1, a_2 \in R$. Show that $Ra_1 + Ra_2 = \{x_1a_1 + x_2a_2 \in R\}$ is an ideal of R. (6 marks)
- 6a). Explain the following terms i.) when a permutation is called r-cyclic. ii) A transposition. iii). When two cycles are said to be disjoint. iv) The signature of $f \in S_n$.(6 marks)
- b) Express each of the following permutations as products of disjoint cycles.

$$i.\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 1 & 3 \end{pmatrix} \quad ii.\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 \end{pmatrix}$$

iii.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 7 & 2 & 1 & 3 & 6 & 5 \end{pmatrix}$$

(3 marks)

c) Given that $f, g \in S_n$, show that $sign(f^0g) = (sign f)(sign g)$.(3 marks)