

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMATICS 2021_1 Examinations

Course Code: MTH312 Course Title: Abstract Algebra Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 4 Questions

 1a) Define the following terms: (i) Normal subgroup of a group G (ii) Commutator of <i>x</i> and <i>y</i>, <i>x</i>, <i>y</i> ∈ G (iii) a ring with identity iv) an even permutation. 	(2 Marks) (2 Marks) (2 Marks)
 b) Show that if f: G₁ → G₂ is a homomorphism, then (i) Ker f is a normal subgroup of G₁. (ii) Im f is a subgroup of G₂ 	(3 1/2 Marks) (3 1/2 Marks)

c)Let R be a ring and $a \in R$. Show that the set $aR = \{ax: a \in R\}$ is a subring of R. (7 Marks)

2a) If R_1 and R_2 are two rings and $f: R_1 \rightarrow R_2$ is a ring homomorphism. Define the followings

(1 Mark)		
(1 Mark)		
(1 Mark)		
bi) Given that $f: \mathbb{R}_1 \to \mathbb{R}_2$ is a ring homomorphism, f is surjective and I is an ideal of \mathbb{R}_1 . Show that		
(4.5 Marks)		

bii) If I is an ideal of a ring R, show that there exists a ring homomorphism $f: R \to R/I$ whose kernel is I. (4.5 Marks)

3a) Define the following terms

(i) ideal of a ring	(2 marks)
(ii) proper ideal of a ring	(2 marks)
(iii) The ideal generated by a_1, a_2, \dots, a_n , elements of a ring.	(2 marks)

bi) Given that X is an infinite set and I is the class of all finite subsets of X. Show that I is

an ideal of
$$\mathscr{D}(X)$$
.

bii) For any ring R and $a_1, a_2 \in R$. Show that $Ra_1 + Ra_2 = \{x_1a_1 + x_2a_2 \in R\}$ is an ideal of R.

(3 Marks)

(3 Marks)

4a) Explain the following terms i. when a permutation is called r-cyclic. ii. A transposition iii. When two cycles are said to be disjoint iv. The signature of $f \in S_n$. (6 Marks)

b) Express each of the following permutations as products of disjoint cycles.

$i.\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 1 & 3 \end{pmatrix} ii.\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 \end{pmatrix}$ $iii.\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 7 & 2 & 1 & 3 & 6 & 5 \end{pmatrix}$	
c) Given that $f, g \in S_n$, show that $sign(f^\circ g) = (sign f)(sign g)$	(3 Marks) (3 Marks)
 5a) Show that Autℤ ≃ ℤ₂ b) Show that any cyclic group is isomorphic to (ℤ,+) or (ℤ_n,+). 	(6 Marks) (6 Marks)
6a) Define the following terms (i) Principal ideal	(2 Marks)

(I) Principal Ideal	(Z Marks)
(ii) Nilpotent	(2 Marks)
(iii) Nil radical of R .	(2 Marks)

b) Given a ring R and an ideal I. Show that R/I is a ring with respect to addition and multiplication defined by (x + I) + (y + I) = (x + y) + I and (x + I)(y + I) = (xy) + I for all $x, y \in R$. (6 Marks)