

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES **April Examination 2019**

Course Code:	MTH312
Course Title:	Abstract Algebra II
Credit Unit:	3
Time Allowed:	3 HOURS
Total:	70 Marks
Instruction:	ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS

- (2marks) 1. (a) Define a quotient group.
 - (b) Let *H* be a subgroup of a group *G*. Prove that the following equivalent: (i). *H* is normal in *G*. (ii). $g^{-1}Hg \subseteq H \forall g \in G$. (iii). $g^{-1}Hg = H \forall g \in G$.
 - (c) Let S be a subring of a ring R. Show that the inclusion map defined by $i: S \to R$ defined by i(x) = x is a homomorphism. Hence, obtain Ker f and Im f.
 - (d) (i). Find the kernel of the homomorphism $f: Z \to Z_{12}$ defined by f(x) = x(ii). What are the ideals of Z_{12} .

2. (a). Define a ring for a non-empty set R.

(b) Consider the set $Z + iZ = \{m + in: m \text{ and } n \text{ are integers}\}$, where $i^2 = -1$.

Verify that Z + iZ is a ring under addition and multiplication of complex number.

- (5marks)
- (c) Let X be a non-empty set, $\mathcal{P}(X)$ be the collection of all subsets of

X and Δ denote the symmetric difference operation. Show that ($\wp(X), \Delta, \cap$) is a ring.

1

(5marks)

- 3. (a) Define the following:
 - (i). External direct product
 - (ii) Internal direct product

(2marks)

(9marks)

(5marks)

(6marks)

(2marks)

(b) Let a group G be internal direct product of its subgroups H and K. Prove that:

(b) Let a group G be internal direct product of its subgroups H and K . Prove t	hat:	
each $x \in G$ can be uniquely expressed as $x = hk$, where $h \in H, k \in K$; $hk = kh \forall h \in H, k \in K$.	(5marks)	
(c) (i). Show that a group G order of 255 ($3 \times 5 \times 17$) has either 1 or 51 Sylov	v 5-subgroups.	
(ii). How many Sylow 3-subgroups can it have?	(5marks)	
4. (a) (i) Define a group homomorphism.		
Let $f: G_1 \to G_2$ be a homomorphism. Define:		
(ii). image of f .		
(iii). kernel of f .	(3marks)	
(b) Consider the groups $(R, +)$ and $(C, +)$ and define $f: (C, +) \rightarrow (R, +)$	(Sindiks)	
by $f(x + iy) = x$, the real part of $x + iy$. Show that f is a homomorph	icm	
Hence, find the Im f and Ker f	(5marks)	
(c) If $f: G_1 \to G_2$ and $g: G_2 \to G_3$ are two group homomorphisms, show that		
composite map $g \circ f \colon G_1 \to G_3$ is also a group homomorphism.	(4marks)	
$f(x)$ (i) When is a normalization $f \in C$ said to be π evaluated		
5. (a) (i). When is a permutation $f \in S_n$ said to be r -cyclic?		
(ii). Prove that every permutation in S_n ($n \ge 2$) can be written as a		
product of transpositions	(4marks)	
(b) (i). Show that (S_n, \circ) is a non-commutative group for $n \ge 3$.		
(ii). Do the cycles (1 3) and (1 5 4) commute? Give reason for your answ	wer.(6marks)	
(c) Express the following cycles as products of transpositions:		
(i). (1 3 5) (ii). (5 3 1) (iii). (2 4 5 3).	(2marks)	
(i). (155) (ii). (551) (iii). (2455) .	(211101 K3)	
6. (a) Define the following in relation to groups:		
(i). Isomorphism		
(ii). Automorphism.	(2marks)	
(b) (i). If $\emptyset: G \to H$ and $\theta: H \to K$ are two isomorphisms of groups, then show that $\theta \circ \emptyset$ is an		
isomorphism of G onto K .		

- (ii). Prove that any cyclic group is isomorphic to (Z, +) or $(Z_{n}, +)$. (6marks)
- (c) Obtain the image of fg $\in Inn G$, where

(i).
$$G = GL_2(R)$$
 and $g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
(ii). $(G, X) = (Z, X)$ and $g = 3$
(iii). $G = Z/5Z$ and $g = 4$. (4marks)