

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES November Examination 2018

Course Code: Course Title: Credit Unit: Time Allowed: Instruction:	MTH312 Abstract Algebra II 3 3 HOURS ATTEMPT NUMBER ONE (1) AND ANY (OTHER FOUR	(4) QUESTIONS
1. (a) Define a normal subgroup of a group G		(3marks)	
(b) Prove that if $H \supseteq G$, and $K \supseteq G$, $K \leq G$. Then			
(i) $HK \leq G$ (ii) $HK \geq G$.		(8marks)	
(c) Define the term Ring		(2marks)	
(d) Let <i>R</i> be a ring. Show that the identity map 1_R is a ring homomorphism.			
What are ker1 _{<i>R</i>} and im1 _{<i>R</i>} ? (9mar)		(9marks)	
2. (a) Let <i>G</i> be the group of integers under addition and let $\phi: G \to G$ such that $\phi(x) = 2x, \forall x \in G$.			
Then prove that \emptyset is a homomorphism (4marks)		(4marks)	
(b) Show that the product of two normal subgroup is a normal subgroup		oup	(4marks)
(c) Let G be a group. Then show that $[G, G]$ is a normal subgroup of G. Hence show that $G/[G, G]$ is			
commutative group(4marks)			
3. (a) Write the following permutations as the product of disjoint cycles			
(i) $f = \begin{pmatrix} 123\\234 \end{pmatrix}$	$ \begin{array}{l} 456789\\ 516798 \end{array} \text{(ii)} \ f = \begin{pmatrix} 123456\\ 654312 \end{pmatrix} $		(6marks)
(b) Find the inverse of each of the following permutations			
$(i) \begin{pmatrix} 1234\\ 1342 \end{pmatrix}$	(ii) $\binom{1234}{3412}$		(6marks)
4. (a) Define ring homomorphism			(2marks)
(b) Show that every homomorphic image of a commutative ring is commutative			(5marks)
(c) Show that the quotient group of a cyclic group is cyclic		(5marks)	
	1		

- 5. (a) Let $f: R \to S$ be an onto ring homomorphism, show that if J is an ideal of S, then $f(f^{-1}(J)) = J$ (4marks)
 - (b) If *H* is any subgroup of a group *G* and $a, b \in G$. then prove that $Ha = Hb \Leftrightarrow ab^{-1} \in H$ (4marks)

(c) If $f: G \to H$ is an isomorphism of groups and G is an abelian group. Then show that H is also abelian (4marks)

6. (a) Define a sylow p-subgroup of a group G. (3marks)

(b) If *H* is a sylowp-subgroup of *G* and $x \in G$.

Then show that $x^{-1}Hx$ is also a sylow p-subgroup of G. (9marks)