

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS October Examination 2019

Course Code:	MTH 312
Course Title:	Abstract Algebra II
Credit Unit:	3
Time Allowed:	3 Hours
Total Marks:	70
Instructions:	Answer Question Number One and Any Other Four Questions

 (a) (i) Define a group and a subgroup. (ii) Show that every subgroup of a Commutative group is normal. 	(5 Marks) (4 Marks)
(b) (i) Let H and K be normal subgroups of a group G, show that $H \cap$ (ii) Show that the subgroup $\langle (1 \ 2) \rangle$ of S_3 is not normal.	K ⊲ G. (3 Marks) (4 Marks)
(c) Show that every subgroup of a group G of index 2 is normal	(6 Marks)
 2. (a) (i) Define the term group homomorphism. (ii) let H ⊲ G, consider the map α: G → G/H defined by α(x) = Show that: (i) α is a homomorphism. (ii) α is onto and find Ker α (b) Show that 3ℤ/12ℤ ≅ ℤ₄ 	(2 Marks) Hx. (3 Marks) (3 Marks) (4 Marks)
 3. (a) Define Sylow p-subgroup of a group G. (b) (i) Define the internal product of two subgroups of a group (ii) Hence, show that any group of order 15 is cyclic. 	(3 Marks) (3 Marks) (6 Marks)
 4. (a) Let R ≠ Ø be a set and S a subset of R. Define (i) a ring R and (ii) algebraic structures. 	a subring <i>S</i> as (4 Marks)
(b) (i) Show that $(\mathbb{Z}_n, +, \cdot)$ is a ring, where \mathbb{Z}_n is the set of integers modulo n	(4 Marks)
(ii) Write out the Cayley tables for addition and multiplication in \mathbb{Z}_6 .	(4 Marks)

- 5. (a) (i) Define an Ideal of a ring *R*. (2 Marks)
 (ii) Let *R* be a ring and *I* be an ideal in *R*, show that *R/I* is a ring with respect to addition and multiplication defined by: (x + I) + (y + I) = (x + y) + I and (x + I) . (y + I) = xy + I ∀x, y ∈ R. (6 Marks)
 (b) Obtain two proper non-trivial subrings of Z × ℝ. (4 Marks)
- 6. (a) f: R → S be a ring homomorphism, where R and S are rings. Then show that R/Ker f ≅ Im f. Hence, if f is surjective, then R/Ker f ≅ S. (9 Marks)
 (b) If f: G → H is an isomorphism of groups and G is abelian, then show that H is also abelian. (3 Marks)