NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS
 2021_2 Examinations

```
Course Code: MTH315
Course Title:
Credit Unit:
Time Allowed:
Total:
Instruction:
```

MTH315
Analytical Dynamics
3
3 Hours
70 Marks
Answer Question One (1) and Any Other 4 Questions

1. (a) Determine the number of degrees of freedom in each of the following cases:
(i) 20 particles moving freely in a plane
(ii) 15 particles moving freely in space .
(b) A system of particles consists of a 3-gram mass located at (1, 2, -1), a 5-gram mass at $(0,1,3)$ and 2 -gram mass at $(1,-1,1)$. Find the center of mass.
(c) A uniform beam is 10 m long and has a mass 10 kg and masses of 6 kg and 8 kg are
suspended from its ends; at what point must the beam be supported so that it may rest
horizontally?
(8marks)
(d) A quadrilateral ABCD has masses 2,3, 5 and 7 units located at its vertices, $\mathrm{A}(3,-$
$2,2), B(2,-2,3), C(1,-2,4)$ and $D(4,1,3)$. Find the coordinates of the center of mass. marks)
2. Three particles of masses $1,2,3$ respectively have position vectors
$r_{1}=\left(t^{2}+4\right) i-t^{2} j+t k$,
$r_{2}=-2 t i+3 t^{2} j-2 t k$,
$r_{3}=-t^{2} i-t^{2} j+2 t k$, where t is time.
Find (a) the velocity of the center of mass at time $t=0$
(b) the acceleration at $\mathrm{t}=1$.
3. A particle of mass 12 units moves along a space curve whose position vector is given as a function of time t by $r=\left(t^{4}-3 t\right) i+6 t^{3} j+t^{3} k$
At time $t=1$, find the (a) momentum
(b) force field.
(6 marks)
4. A particle of mass 3 moves in a force field depending on time t given by $F=9 t^{2} i-3 t j+6 t k$. Assuming that at $t=0$ the particle is located at $r_{0}=-i-j+2 k$ and has velocity $v_{0}=3 i+j-k$, find (a) the velocity
(b) the position at any time t.
5. A particle moves along the x axis in a force field having potential $V=\frac{\alpha}{3} x^{3}-\frac{\beta}{2} x^{2}$, where α and β are positive constants. Determine the point(s) of equilibrium.
(12 marks)
6. (a) State without proof the Liouville's theorem in Hamiltonian theory.
(b) Minimise the integral

$$
I=\int_{0}^{\frac{\pi}{2}}\left[2\left(\frac{d y}{d t}\right)^{2}-2 y^{2}+4 t y\right] d t, y(0)=0 \text { and } y\left(\frac{\pi}{2}\right)=0
$$

