NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES
 2021_1 Examinations

Course Code:
 Course Title: Credit Unit: Time Allowed: Total: Instruction:

MTH315

Analytical Dynamics
3
3 Hours
70 Marks
Answer Question One (1) and Any Other 4 Questions

1. (a) Determine the number of degrees of freedom in each of the following cases:
(i) 12 particles moving freely in a plane (ii) 23 particles moving freely in space.
(b) A system of particles consists of a 2-gram mass located at (1, 0, -3), a 7-gram mass at (-
$1,1,3$) and 2 -gram mass at ($1,-1,1$). Find the center of mass.
(6 marks)
(c) A uniform beam is 100 m long and has a mass 100 kg and masses of 60 kg and 80 kg are
suspended from its ends; at what point must the beam be supported so that it may rest
(8 marks)
d) A quadrilateral $A B C D$ has masses $1,5,2$ and 3 units located at its vertices, $A(3,-2,2)$, $B(2,-2,3), C(1,-2,4)$ and $D(4,1,3)$. Find the coordinates of the center of mass (4 marks)
2. Three particles of masses $3,2,4$ respectively have position vectors
$r_{1}=(t+2) i-2 t^{2} j+k$,
$r_{2}=-2 t i+3 t^{2} j+k$,
$r_{3}=\frac{1}{2} t^{2} i-t j+2 t k$, where t is time.
Find (a) the velocity of the center of mass at time $t=0$ (b) the acceleration at $t=1$.(12 marks)
3. A particle of mass 10 units moves along a space curve whose position vector is given as a function of time t by

$$
r=\left(2 t^{3}-3 t+2\right) i+\left(6 t^{2}-t\right) j+t^{3} k
$$

At time $t=1$, find the (a) momentum (b) force field.
4. A particle of mass 2 moves in a force field depending on time t given by $F=6 t^{2} i-2 t j+4 t k$. Assuming that at $t=0$ the particle is located at $r_{0}=2 i-3 j+k$ and has velocity $v_{0}=i+3 j-k$, find (a) the velocity (b) the position at any time t.
5. A particle moves along the x axis in a force field having potential
$V=a x^{2}-b x^{3}+\frac{2}{3}$,
where a and b are positive constants. Determine the point(s) of equilibrium.
(12 marks)
6. (a) State without proof the Liouville's theorem in Hamiltonian theory.
(b) Minimise the integral

$$
I=\int_{0}^{\frac{\pi}{2}}\left[3\left(\frac{d y}{d t}\right)^{2}-3 y^{2}+6 t y\right] d t, y(0)=\frac{\pi}{2} \text { and } y\left(\frac{\pi}{2}\right)=0
$$

