

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES

November Examination 2018

Course Code:	MTH315
Course Title:	Analytical Dynamics
Credit Unit:	$\mathbf{3}$
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One and Any Other 4 Questions

1. (a) State the Lagrange's equations
(2 marks)
(b) A system of two particles is connected by a string over a fixed, frictionless pulley.
(i) Find the Lagrangian of the system and determine the equation of motion of system
(6 marks)
(c)The displacement of a particle from the origin is given by $\mathbf{r}=\mathrm{t}^{2} \mathbf{i}+\mathrm{t}^{-2} \mathbf{j}$, where is t the time. Find the velocity, speed and acceleration. At what time are the velocity and displacement right angles?
(7marks)
(d) A train moving with constant acceleration passes three posts, A, B, C on a straight road. The distance from A to B is 15 m , and from B to $C 20 \mathrm{~m}$. The train takes 6 sec to go from A to B and 5 sec to go from B to C. Find the acceleration of the train and its distance from A when its speed is $5.5 \mathrm{~m} / \mathrm{sec}$.
(7 marks)
2. (a) Let $\mathrm{m}_{1}, \mathrm{~m}_{2}$ be the masses of the two spheres moving in the same straight line with their respective velocities u_{1}, u_{2} collide. If v_{1}, v_{2} are their velocities after impact. Find their subsequent speeds if the coefficient of restitution is e. ($\mathbf{6}$ marks)
(b) Briefly explain the followings
(i) a perfectly inelastic collision ($\mathbf{3}$ marks)
(ii) a perfectly inelastic collision.
(3 marks)
3. (a) Three smooth spheres, A, B, C of masses $m, 2 \mathrm{~m}$ and 4 m respectively rest on a smooth plane (horizontal) with their centres collinear, and B lies between A and C. The coefficients of restitution between any two pairs are equal. If A is projected towards B with velocity U and C moves with velocity.
(6 marks)
(b) A bullet of mass 1 g is fired into a block of ice of mass I kg which can slide freely. If the bullet is fired with speed $2000 \mathrm{~m} / \mathrm{s}$ and comes to rest embedded in the ice, determine the final speed of the ice.
(6 marks)
4. (a) State the Hamilton's principle.
(2 marks)
(b) If the Hamiltonian $\mathrm{H}=\sum_{\alpha=1}^{\mathrm{n}} P_{\alpha} \dot{q}_{\alpha}-\mathrm{L}$ does not contain the variable time t explicitly and is expressed as a function of coordinate q_{α} and momemta p_{α}, prove that

$$
\dot{p}_{\alpha}=-\frac{\partial H}{\partial q_{\alpha}}, \quad \dot{q}_{\alpha}=\frac{\partial H}{\partial p_{\alpha}},
$$

(5 marks)
(c) A particle moves in the xy plane under the influence of a central force depending only on its distance from the origin. Determine the Hamiltonian for the system. (5 marks)
(a) State Euler's equation
(2 marks)
(b) Hence, find function y that minimize the integral $I=\int_{0}^{\frac{\pi}{2}}\left(\left(\frac{d y}{d t}\right)^{2}-y^{2}+2 t y\right) d t$

$$
\text { Subject to } y(0)=0 \text { and } y\left(\frac{\pi}{2}\right)=0
$$

(5 marks)
(c) Prove that a transformation is canonical if there exists a function G such that $\frac{d G}{d t}=L-l$ where L and lare the Lagrangians of the old and new coordinates respectively and G is the generating function.
(5 marks)
(6) (a) A body moves in a conservative force field $\mathrm{F}=\left(\mathrm{y}^{2}-2 x y z^{3}\right) \mathbf{i}+\left(3+2 x y-x^{2} z^{3}\right) \mathbf{j}+\left(6 z^{3}-3 \mathrm{x}^{2} z^{2} y\right) \mathbf{k}$ from the point $(2,-1,2)$ to $(-1,3,-2) \quad$ Find the work done.
(6 marks)
(b) If a force F is such that $\mathrm{F}=-\nabla \mathrm{V}$ where V is the potential function and T is the kinetic energy, show that $\mathrm{T}+\mathrm{V}=$ constant.
(6 marks)

